Please wait a minute...
J4  2013, Vol. 47 Issue (11): 1976-1982    DOI: 10.3785/j.issn.1008-973X.2013.11.014
能源工程     
乘用车发动机电控冷却系统控制策略
刘震涛,尹旭,韩松,孙正,俞小莉
浙江大学 动力机械及车辆工程研究所,浙江 杭州 310027
Control strategy of electrically controlled passenger vehicle engine cooling system
LIU Zhen-tao, YIN Xu, HAN Song, SUN Zheng, YU Xiao-li
Power Machinery & Vehicular Engineering Institute, Zhejiang university, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对乘用车发动机冷却系统水温控制问题.建立某车型冷却系统仿真模型,通过台架试验验证模型,在模型的基础上设计PI反馈控制和前馈-反馈综合控制的控制策略,将3种冷却系统控制方式在暖机、负荷突变情况下进行对比,并在新欧洲行驶循环 (NEDC)下考虑冷却系统功耗进行综合分析.结果表明:PI反馈控制策略可将发动机冷却液出口水温波动控制在±1.5 ℃,而综合控制则将温度波动控制在±0.5 ℃,PI反馈控制和综合控制较原机减小暖机时间, 相对原机系统在NEDC循环下分别降低功耗55.3%、58.0%.采用前馈-反馈的综合控制方式较PI反馈控制策略冷却液温度波动更小且冷却系统附件功耗能够进一步降低.

Abstract:

Temperature control problem was studied on a passenger car engine cooling system. and a certain car cooling system model was  established. The model was also verified by the bench test. Based on the cooling system model, PI feedback control strategy and feedforward-feedback control strategy were designed. The  three different cooling system control modes were compared under warm-up & mutation load operations.The comprehensive analysis was also done for the cooling system parasitic cost under (new european driving cycle NEDC). Results show that, coolant temperature fluctuation could be controlled within ±1.5 ℃ by means of PI feedback control and ±05 ℃ by means of integrated control. Compared to the original cooling system, the warm up time of the PI feedback control system and the integrated control system are reduced, and the parasitic costs are reduced by 55.3% and 58.0% respectively. The feedforward-feedback control system has lower coolant temperature fluctuation and the parasitic cost is also further reduced. 

出版日期: 2013-11-01
:  TK 414.2  
通讯作者: 韩松,男,助理研究员.     E-mail: hanss@zju.edu.cn
作者简介: 刘震涛(1971-),男,副教授,从事车辆热管理、发动机零部件疲劳可靠性技术研究. E-mail: liuzt@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘震涛,尹旭,韩松,孙正,俞小莉. 乘用车发动机电控冷却系统控制策略[J]. J4, 2013, 47(11): 1976-1982.

LIU Zhen-tao, YIN Xu, HAN Song, SUN Zheng, YU Xiao-li. Control strategy of electrically controlled passenger vehicle engine cooling system. J4, 2013, 47(11): 1976-1982.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.11.014        http://www.zjujournals.com/eng/CN/Y2013/V47/I11/1976

[1] 成晓北,潘立,鞠洪玲.现代车用发动机冷却系统进展[J].车用发动机,2008,173(1):1-7.
CHENG Xiao-bei, PAN Li, JV Hong-ling. Research progress of cooling system for modern vehicle engine[J]. Vehicle Engine, 2008,173(1):1-7.
[2] PANG H H, BRACE C J. Review of engine cooling technologies for modern engines\
[J\].Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2004,218(11):1209-1215.
[3] REITBAUER R, HAGER J, MARZY R. Optimization of heat management of vehicles using simulation tools [C] ∥ 2000 FISITA World Automotive Congress. Seoul:Society of Automotive Engineers of korea, 2000,F2000H246.
[4] MATTHIEU C, BERTRAND G, ALAIN F, et al. The need for an electrical water valve in a THErmal management intelligent system (THEMISTM) [C] ∥2003 SAE World Congress. Detroit: SAE Paper, 2003: 2003-01-0274.
[5] AP N S, JOUANNY P, POTIER M, et al. Ultimatecooling system for new generation of vehicle [C] ∥ Vehicle Thermal Management Systems Conference and Exhibition. Toronto: SAE Paper, 2005: 2005-01-2005.
[6] CHALGREN R D, ALLEN D J. Light duty diesel advanced thermal management[C]∥ Vehicle Thermal Management Systems Conference and Exhibition. Toronto: SAE Paper, 2005: 2005-01-2020.
[7] ALLEN D J, LASECKI M P. Thermal management evolution and controlled coolant flow [C] ∥ Vehicle Thermal Management Systems Conference and Exhibition. Nashville: SAE Paper, 2001: 2001-01-1732.
[8] BEHR. Engine Cooling-comprehensive knowledge for garages [M]. Germany: Behr Hella Service GmbH, 2008:35-36.
[9] SALAH M H, MITCHELL T H, WAGNER J R. Nonlinear-control strategy for advanced vehicle thermal-management systems [J]. IEEE Transactions on Vehicular Technology, 2007,57(1):127-137.
[10] AI TAMIMI A, SALAH M H, Al-Jarrah A. neural network-based optimal control for advanced vehicular thermal management systems[C] ∥SAE 2011 Commercial Vehicle Engineering Congress. Rosemont:SAE Paper, 2011: 2011-01-2184.
[11] 姚仲鹏,王新国.车辆冷却传热[M]. 北京:机械工业出版社,2001:99-100.
[12] AP N S, GUERRERO P, JOUANNY P. Influence of fan system electric power on the heat performance of engine cooling module[C]∥2003 SAE World Congress. Detroit:SAE Paper, 2003:2003-01-0275.1313

No related articles found!