Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1619-1624    DOI: 10.3785/j.issn.1008-973X.2013.09.016
机械工程     
PCR仪温度场热模型的研究与验证
毛贺,陈章位,黄靖,胡科伟
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Research and verification of thermal model for
PCR instrument temperature field
MAO He, CHEN Zhang-wei, HUANG Jing, HU Ke-wei
State Key Laboratory of Fluid Power and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为衡量聚合酶链反应(PCR)仪能否实现基因扩增的目的,基于传热学原理,建立PCR仪热循环系统的温度场热模型.通过有限元仿真方法对PCR仪96孔样品块温度场进行了定量描述,并绘制出单个样品孔和反应试剂的温度变化曲线.在此温度变化曲线的基础上,得到反应试剂温度与样品孔温度的关系曲线,由样品孔温度计算得出同一时刻的反应试剂温度.通过高精度温度检测系统,对PCR仪样品孔与反应试剂热循环过程中的温度进行了测量实验,所得到的样品孔与反应试剂的实际温度曲线证明了该仿真热模型的合理性.该模型为PCR仪热循环系统的热性能分析提供了理论基础和实验依据.

Abstract:

Based on heat transfer theory, a thermal model of the temperature field for PCR thermal cycler system was established to evaluate whether a polymerase chain reaction (PCR) instrument is capable of gene amplification. By means of finite element analysis, the thermal uniformity of a 96-hole PCR instrument sample block was quantitatively described, and the temperature curves of one single sample well and reagent were plotted. Based on these temperature curves, the relation curve of reagent temperature and reaction well temperature was achieved, thus the reagent temperature could be deduced from the reaction well temperature at the same time point. Through high-precision temperature detection system, temperatures of the PCR instrument sample well and the reagent during the thermal cycling process were measured. The actual temperature curves of the reaction well and reagents derived from the experiment proved the rationality of this simulation thermal model. This model provides a theoretical foundation and experimental reference for the thermal performance analysis of the PCR thermal cycler system.

出版日期: 2013-09-01
:  TH 79  
基金资助:

浙江省科技厅重大科技专项基金资助项目(2010C11022).

通讯作者: 陈章位,男,教授.     E-mail: chenzw@zju.edu.cn
作者简介: 毛贺(1988-),男,博士生,从事定量基因扩增仪及相关技术的研究.E-mail:britney@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

毛贺,陈章位,黄靖,胡科伟. PCR仪温度场热模型的研究与验证[J]. J4, 2013, 47(9): 1619-1624.

MAO He, CHEN Zhang-wei, HUANG Jing, HU Ke-wei. Research and verification of thermal model for
PCR instrument temperature field. J4, 2013, 47(9): 1619-1624.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.09.016        http://www.zjujournals.com/eng/CN/Y2013/V47/I9/1619

[1] ERLICH H A. Polymerase chain reaction[J]. Journal of Clinical Immunology, 1989, 9(6): 437-447.
[2] MULLIS K, FALOONA F, SCHARF S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction[J]. Cold Spring Harbor Symposium in Quantitative Biology, 1986, 51: 263-273.
[3] 陈世泽,陈章位,黄靖,等. PCR仪温度控制均匀性研究与仿真分析[J]. 中国生物医学工程学报,2009,28(4):610-614.
CHEN Shi-ze, CHEN Zhang-wei, HUANG Jing, et al. Research and simulation on the temperature uniformity control of PCR instrument[J]. Chinese Journal of Biomedical Engineering, 2009, 28(4): 610-614.
[4] MAO Chao-yang, CHEN Rong-sheng, CHEN Yung-shieng. The improvement of temperature uniformity for polymerase chain reaction with a micro-hotplate(Nickel)[C]∥2006 Electronics Systemintegration Technology Conference. Dresden, Germany:[s.n.],2006, 2: 1242-1248.
[5] 黄靖,陈章位,姚英豪,等. 定量PCR仪热循环系统温度均匀性有限元仿真研究[J]. 仪器仪表学报,2010,31(5):1142-1146.
HUANG Jing, CHEN Zhang-wei, YAO Ying-hao, et al. FEA simulation research of temperature uniformity in quantitative PCR thermal cycle system[J]. Chinese Journal of Scientific Instrument, 2010,31(5):1142-1146.
[6] 郭宽良. 计算传热学[M] . 合肥:中国科学技术大学出版社,1988 : 210-258.
[7] 翁中杰,程惠尔,戴华淦. 传热学[M]. 上海:上海交通大学出版社,1987: 108-147.
[8] 许京荆. Ansys 120 热分析教程与实例解析[M]. 上海:上海大学出版社, 2010: 200-278.
[9] 马明建, 周长城. 数据采集与处理技术[M]. 西安:西安交通大学出版社,1998: 48-64.
[10] 范金城,梅长林. 数据分析[M]. 北京:科学出版社,2002: 25-107.
[11] 盛骤,谢式千,潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社,2001: 78-136.
[12] 王中宇,刘智敏,夏新涛,等. 测量误差与不确定度评定[M]. 北京:科学出版社,2008: 88-125.

[1] 黄靖, 陈章位, 姚英豪. PCR热循环系统热性能影响因素的等效电路研究[J]. J4, 2011, 45(12): 2216-2221.