Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1603-1610    DOI: 10.3785/j.issn.1008-973X.2013.09.014
机械工程     
耗散粒子动力学的一种新的固体壁面边界条件
许少锋,汪久根
浙江大学 机械工程学系,浙江 杭州 310027
A new wall boundary condition in dissipative particle dynamics
XU Shao-feng,WANG Jiu-gen
Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

由于耗散粒子动力学(DPD)粒子间是软势作用,很难施加无滑移的固体壁面边界,为此提出一种新的固体壁面边界条件,该方法是通过给壁面粒子赋予相对流体粒子的虚拟速度,但壁面粒子不能移动,虚拟速度用于计算壁面粒子对流体粒子的耗散力,进而增大流体粒子的耗散阻力,实现壁面无滑移条件.利用新的边界模型模拟了微通道内的Poiseuille流动,得到的微通道内的速度分布曲线表明,该模型实现了壁面无滑移条件;得到的密度和温度分布曲线显示,壁面附近密度波动很小,但当壁面粒子密度大于8.0时,壁面附近流体粒子密度波动较大.模拟结果与Navier-Stokes方程理论解吻合很好,进一步验证了新边界的可行性和DPD程序的正确性.

Abstract:

Because of the soft potential that dissipative particle dynamics (DPD) employs, the boundary conditions are difficult to impose. A new boundary condition was proposed by giving a virtual velocity to the wall particles. The wall particles do not move in the simulation, and the virtual velocity is used in the calculation of the dissipative force between wall particles and fluid particles, which can increase the dissipative force of the fluid particles, thus, the new boundary model can achieve the no-slip boundary conditions.  Poiseuille flow was simulated in a narrow channel to demonstrate the validity of this boundary model. The simulation results of velocity, density and temperature distribution in the channel show that the new boundary condition model is an effective way to implement no-slip boundary conditions, and effectively eliminates density fluctuations in the near wall region. But when  density of the wall is more than 8.0, the new wall boundary condition will be unable to work well. The good agreements of the simulation results with the theoretical solution of Navier-Stokes equation also verify the validity of the new model and DPD program.

出版日期: 2013-09-01
:  O 35  
基金资助:

国家自然科学基金资助项目(50775202);高等学校博士学科点专项科研基金资助项目(J20081235);浙江省自然科学基金重点资助项目(Z1100475).

通讯作者: 汪久根,男,教授,博导.     E-mail: me_jg@zju.edu.cn
作者简介: 许少锋(1985-),男,博士生,从事机械仿生设计研究.E-mail:10925066@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

许少锋,汪久根. 耗散粒子动力学的一种新的固体壁面边界条件[J]. J4, 2013, 47(9): 1603-1610.

XU Shao-feng,WANG Jiu-gen. A new wall boundary condition in dissipative particle dynamics. J4, 2013, 47(9): 1603-1610.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.09.014        http://www.zjujournals.com/eng/CN/Y2013/V47/I9/1603

[1] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhysics Letters, 1992, 19(3): 155-156.
[2] ESPANOL P, WARREN P B. Statistical mechanics of dissipative particle dynamics [J]. Europhysics Letters, 1995, 30(4): 191-196.
[3] MARSH C A, BACKX G, ERNST M H. Fokker-Planck-Boltzmann equation for dissipative particle dynamics [J]. Europhysics Letters, 1997, 38(6):411-415.
[4] MARSH C A, BACKX G, ERNST M H. Static and dynamic properties of dissipative dynamics [J]. Physical Review E, 1997, 56(2):1677-1691.
[5] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. The Journal of Chemical Physics, 1997, 107 (11): 4423-4435.
[6] KONG Y,MANKE C W, MADDEN W G, et al. Modeling the rheology of polymer solutions by dissipative particle dynamics [J]. Tribology Letters, 1997, 3(1):133-138.
[7] WILLEMSEN S M, HOEFSLOOT H C, IEDEMA P D. Mesoscopic simulation of polymers in fluid dynamics problems[J]. Journal of Statistical Physics, 2002, 107:53-65.
[8] LIU M B, MEAKIN P, HUANG H. Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networks [J]. Physics of Fluids, 2007, 19:033302.
[9] LIU M B, MEAKIN P, HUANG H. Dissipative particle dynamics simulation of pore-scale multiphase fluid flow[J]. Water Resources Research, 2007, 43(4): W04411.
[10] BOEK E S, CONVENEY P V, LEKKERKERKER H N W. Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics [J]. Physical Review E, 1997, 55(3):3124-3133.
[11] DE PALMA P, VALENTINI P, NAPOLITANO M. Dissipative particle dynamics simulation of a colloidal micropump[J]. Physics of Fluids,2006,18(2):027-103.
[12] DZWINEL W, BORYCZKO K, YUEN D A. A discrete-particle model of blood dynamics in capillary vessels[J]. Journal of Colloid and Interface Science, 2003, 258:163-173.
[13] PAN W X, CASWELL B, KARNIADAKIS G E. A low-dimensional model for the red blood cell [J]. Soft Matter, 2010, 6: 4366-4376.
[14] PAN W X, FEDOSOV D A, CASWELL B,et al. Predicting dynamics and rheology of blood flow: a comparative study of multiscale and low-dimensional models of red blood cells [J]. Microvascular Reseach, 2011, 82:163-170.
[15] FAN X J, PHAN-THIEN N, CHEN S, et al. Simulating flow of DNA suspension using dissipative particle dynamics [J]. Physics of Fluids, 2006, 18:063-102.
[16] PATTERSON K, LISAL M, COLINA C M. Adsorption behavior of model proteins on surface[J]. Fluid Phase Equilibria, 2011, 302:48-54.
[17] KONG B, YANG X Z. Dissipative particle dynamics simulation of contact angle hysteresis on a patterned solid/air composite surface[J]. Langmuir,2006,22(5):2065-2073.
[18] HENRICH B, CUPELLI C, MOSELER M, et al. An adhesive DPD wall model for dynamic wetting[J]. Europhysics Letters, 2007,80(6):60004.
[19] VISSER D C, HOEFSLOOT H C J, IEDEMA P D. Comprehensive boundary methods for solid walls in dissipative particle dynamics [J]. Journal of Computational Physics, 2005, 205(2): 626-639.
[20] MEHBOUDI A, SAIDI M S. A systematic method for the complex walls no-slip boundary condition modeling in dissipative particle dynamics [J]. Scientia Iranica, 2011, 18(6): 1253-1260.
[21] 陈硕,金亚斌,张明焜,等. 耗散粒子动力学中Lees-Edwards边界条件的实施[J]. 同济大学学报:自然科学版,2012,40(1):137142.
CHEN Shuo, JIN Ya-bin, ZHANG Ming-kun, et al. Imposing Lees-Edwards boundary conditions in dissipative particle dynamics[J]. Journal of Tongji University: Natural Science, 2012,40(1):137-142.
[22] JONES J L, LAL M, RUDDOCK J N, et al. Dynamics of a drop at a liquid/solid interface in simple shear fields: a mesoscopic simulation study [J]. Faraday Discuss, 1999, 112:129-142.
[23] REVENGA M, ZUNIGA I, ESPANOL P. Boundary models in DPD[J]. International Journal of Modern Physics C, 1998, 9(8):1319-1328.
[24] REVENGA M, ZUNIGA I, ESPANOL P. Boundary conditions in dissipative particle dynamics [J]. Computer Physics Communication, 1999, 121/122:309-311.
[25] WILLEMSEN S M, HOEFSLOOT H C, IEDEMA P D. No-slip boundary condition in dissipative particle dynamics[J]. International Journal of Modern Physics, 2000, 11(5): 881-890.
[26] FAN X J, PHAN-THIEN N, YONG N T, et al. Microchannel flow of a macromolecular suspension [J]. Physics of Fluids, 2003, 15(1): 11-21.
[27] DUONG-HONG D, PHAN-THIEN D, FAN X J. An implementation of no-slip boundary conditions in DPD [J]. Computational Mechanics, 2004, 35:24-29.
[28] PIVKIN I V, KARNIADAKIS G E. A new method to impose no-slip boundary conditions in dissipative particle dynamics [J]. Journal of Computational Physics,2005, 207: 114-128.
[29] PIVKIN I V, KARNIADAKIS G E. Controlling density fluctuations in wall-bounded dissipative particle dynamics systems [J]. Physical Review Letters, 2006,96:206001.
[30] FEDOSOV D A, PIVKIN I V, KARNIADAKIS G E. Velocity limit in DPD simulations of wall-bounded flows [J]. Journal of Computational Physics, 2008, 227:2540-2559.
[31] HUAN L, FEDOSOV D A, KARNIADAKIS G E. Time-dependent and outflow boundary conditions for dissipative particle dynamics systems[J]. Journal of Computational Physics, 2011, 230:37653779.
[32] 刘谋斌,常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法[J]. 物理学报,2010,59(11):7556-7563.
LIU Mou-bin, CHANG Jian-zhong. A new boundary treatment algorithm for dissipative particle dynamics[J]. Acta Physica Sinca, 2010,59(11):7556-7563.
[33] ALTENHOFF A M, WALTHER J H, KOUMOUTSAKOS P. A stochastic boundary forcing for dissipative particle dynamics[J]. Journal of Computational Physics, 2007, 225:1125-1136.
[34] XU Z J, MEAKIN P. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems [J]. The Journal of Chemical Physics, 2009, 130:234103.
[35] BACKER J A, LOWE C P, HOEFSLOOT H C J, et al. Poiseuille flow to measure the viscosity of particle model fluids [J]. The Journal of Chemical Physics, 2005, 122:154503.
[36] REDDY H, ABRAHAM J. Dissipative-particle dynamics simulations of flow over a stationary sphere in compliant channels[J]. Physics of Fluids, 2009, 21(5):053303.
[37] RAPAPORT D C. The art of molecular dynamics simulation[M]. Second Edition. Cambridge: Cambridge University Press, 2004:49-60.
4学科代码:5203040刘18868797183 谢05782299323 05782299323曹87953198 13357102880 G120184W收稿日期:2012-04-08     

No related articles found!