Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1450-1456    DOI: 10.3785/j.issn.1008-973X.2013.08.019
机械工程     
皮星1号A卫星(ZDPS-1A)被动热控制技术
吴昌聚, 徐秀琴
浙江大学 航空航天学院,浙江 杭州 310027
Passive thermal control technology of ZDPS-1A satellite
 WU Chang-ju, XU Xiu-qin
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对皮卫星体积小、质量轻、热容量小和热容密度大等特点带来的热控设计难点,提出完全被动热控以及覆盖法的设计方法.通过对皮卫星热控输入进行详细的分析,提出被动热控的具体措施,并建立热控模型进行仿真计算.进行地面试验和在轨试验.试验结果表明,在轨温度和在地面试验时的温度基本一致,并都在计算得到的温度范围之内.说明完全被动热控以及覆盖法的设计方法在皮卫星上的运用非常成功,为后续皮卫星热控的设计提供借鉴.

Abstract:

In view of the design difficulty of thermal control caused by the small volume, light weight, small heat capacity and large heat flow density of the pico-satellite, passive thermal control and cover method were used. Through the detailed analysis of thermal control design input, the passive thermal control and cover method were proposed. The thermal model was set up and simulated. Also the experiments on ground and in orbit were done. The results show that the temperatures in orbit and on ground match well, and both within the temperature range of calculated results. It reveals that the passive thermal control and cover method are applied successfully in the pico-satellite, which provides reference for the pico-satellite thermal control in the future.

出版日期: 2013-08-01
:  V 417  
基金资助:

国家自然科学基金资助项目(60904090).

作者简介: 吴昌聚(1977—),男,副教授,主要从事微小卫星结构、热控等方面的研究. E-mail: wuchangju@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴昌聚, 徐秀琴. 皮星1号A卫星(ZDPS-1A)被动热控制技术[J]. J4, 2013, 47(8): 1450-1456.

WU Chang-ju, XU Xiu-qin. Passive thermal control technology of ZDPS-1A satellite. J4, 2013, 47(8): 1450-1456.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.08.019        http://www.zjujournals.com/eng/CN/Y2013/V47/I8/1450

[1] WEEREN H, BRAKE H, HOLL G. Thermal aspects of satellite downscaling [J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 592-600.

[2] SCHOLZ A, LEY W, DACHWALD B, et al. Flight results of the COMPASS-1 picosatellite mission [J]. Acta Astronautica, 2010, 67: 1289-1298.

[3] LABERTEAUX J, MOESTA J, BERNARD B. Advanced picosatellite experiment [J]. Aerospace and Electronic Systems Magazine, 2009, 24(9): 4-9.

[4] HIROKI A, KOTA F, SHINICHI I, et al. Design of Tokyo tech nano-satellite cute-1.7+APD II and its operation [J]. Acta Astronautica, 2010, 66: 1412-1424.

[5] KATAOKA J, TOIZUMI T, NAKAMORI T. In-orbit performance of avalanche photodiode as radiation detector on board the picosatellite Cute-1.7+APD II [J]. Journal of Geophysical Research-Space Physics, 2010, 115: A05204/1A05204/9.

[6] SHINICHI N, NOBUTADA S, HIRONORI S, et al. Evolution from education to practical use in University of Tokyo’s nano-satellite activities [J]. Acta Astronautica, 2010, 66: 1099-1105.

[7] HAMANN R J, VERHOEVEN C J M. Nano-satellites, a fast way to pre-qualify new micro-technology [C]∥ 2005 International Conference on MEMS, NANO and Smart Systems. Banff, Alberta, Canada: IEEE Computer Society, 2005: 263-264.

[8] KARAN S, STUART E, ERIC C, et al. Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite [J]. Acta Astronautica, 2006, 59: 236-245.

[9] CHANG Y K, MOON B Y, HWANG K L, et al. Development of the HAUSAT-2 nanosatellite for low-cost technology demonstration [C]∥ Proceedings of 2nd International Conference on Recent Advances in Space Technologies. Istanbul, Turkey: Institute of electrical and electronics engineers, 2005: 173-179.

[10] 麻慧涛,钟奇,范含林,等.微型卫星热控技术研究[J].航天器工程, 2006, 15(2): 6-13.

MA Hui-tao, ZHONG Qi, FAN Han-lin, et al. Research on micro satellite thermal control technology [J]. Spacecraft Engineering, 2006, 15(2): 6-13.

No related articles found!