Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1493-1499    DOI: 10.3785/j.issn.1008-973X.2013.08.0025
计算机技术﹑电信技术     
基于零陷谱减的GSC二元麦克风小阵列语音增强算法
杨立春1,2, 钱沄涛1, 王文宏1
1.浙江大学 计算机科学与技术学院,浙江 杭州310027;2.浙江万里学院 智能控制技术研究所,浙江 宁波 315101
A GSC algorithm based on null spectral subtraction for dual small microphone array speech enhancement
YANG Li-chun1,2, QIAN Yun-tao1, WANG Wen-hong1
1. College of Computer Science,Zhejiang University,Hangzhou 310027, China; 2. Intelligent Control Research Institute, Zhejiang Wanli University, Ningbo 315101
 全文: PDF  HTML
摘要:

为了提高广义旁瓣抵消器语音增强算法在二元麦克风小阵列中的噪声抑制能力,提出一种基于零陷谱减二元麦克风小阵列广义旁瓣抵消器的改进语音增强算法.在广义旁瓣抵消器固定波束支路上利用谱减法抑制目标语音零陷方向噪声能量以提高其信噪比,在自适应支路使用基于动态收敛步长的快速分块最小均方自适应滤波器进一步抑制剩余噪声,以降低算法复杂度并提升自适应滤波器的收敛性.实验结果表明,相对于其他二元麦克风小阵列波束形成语音增强算法,该算法可以在任意方向获得较高质量的目标语音.

Abstract:

 To improve the denoising ability of generalized sidelobe canceller(GSC) algorithm  for  dual small microphone array, a new GSC based on null spectral subtraction is  proposed. In fixed beamforming branch of GSC, noise energy of desired speech  in null direction  is suppressed by spectral subtraction to improve the signal to noise ratio (SNR). At the same time,in  adaptive beamforming branch of GSC, a fast block least mean square (FBLMS) based adaptive filter further suppresses the residual noise, in which a dynamic convergence step is used to  reduce the computational  complexity and improve the convergence of adaptive filter. Compared with other denoising algorithms used for dual small microphone array,  experimental results show that the desired speech obtained by  the proposed algorithm is always of higher quality  in any direction.

出版日期: 2013-08-01
:  TN 912.35  
基金资助:

 国家自然科学基金资助项目(61171151);国家“973”重点基础研究发展规划资助项目(2012CB316400);华为科技资助项目(YBCB2010059-2).

通讯作者: 钱沄涛,男,教授,博导.     E-mail: ytqian@zju.edu.cn
作者简介: 杨立春(1975—),男,博士生,讲师,从事语音信号增强等方向研究.E-mail: lichun_y@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨立春, 钱沄涛, 王文宏. 基于零陷谱减的GSC二元麦克风小阵列语音增强算法[J]. J4, 2013, 47(8): 1493-1499.

YANG Li-chun, QIAN Yun-tao, WANG Wen-hong. A GSC algorithm based on null spectral subtraction for dual small microphone array speech enhancement. J4, 2013, 47(8): 1493-1499.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.08.0025        http://www.zjujournals.com/eng/CN/Y2013/V47/I8/1493

[1] BRANDSTEIN M, WARD D. Microphone arrays: signal processing techniques and applications [M]. Berlin: Springer Verlag, 2001: 116, 229-245.

[2] GRIFFITHS L, JIM C. An alternative approach to linearly constrained adaptive beamforming [J]. IEEE Transactions on Antennas and Propagation, 1982, 30(1): 27-34.

[3] KRUEGER A, WARSITZ E, Haeb-Umbach R. Speech enhancement with a GSC-Like structure employing eigenvector-based transfer function ratios estimation [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(1): 206 -219.

[4] 欧世峰,赵晓晖,顾海军.改进的基于信号子空间的多通道语音增强算法[J].电子学报,2005, 33(10): 1786-1789.

OU Shi-feng, ZHAO Xiao-hui, GU Hai-jun. An improved speech enhancement approach based on signal subspace with multi-Input [J]. ACTA ELECTRONICA SINICA, 2005, 33(10): 1786-1789.

[5] ELKO G W, PONG A N. A simple adaptive first-order differential microphone[C]∥Proceedings of IEEE International Conference on Applications of Signal Processing to Audio and Acoustics. New York: IEEE, 1995: 169-172.

[6] BUCK M, WOLFF T, HAULICK T, et al. A compact microphone array system with spatial post-filtering for auto-motive applications[C]∥ Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Taipe: IEEE, 2009: 221-224.

[7] CHEN J, PHUA K, SHUEA L, et al. Performance evalua-tion of adaptive dual microphone system [J]. Speech Commu-nication, 2009, 51(12): 1180-1193.

[8] NINO-DE-RIVERA L, PEREZ-MEANA H, SANCHEZ-SINENCIO E. A modular analog NLMS structure for system identification[C]∥Proceedings of the 40th Midwest Sym-posium on Circuits and Systems. Sacramento : IEEE, 1997: 835-840.

[9] 王振力,张雄伟, 杨吉斌.一种新的快速自适应滤波算法的研究[J].通信学报,2005, 26(11): 1-6.

WANG Zhen-li, ZHANG Xiong-wei YANG Ji-bin,et al Study of a new fast adaptive filtering algorithm [J]. Journal on Communications, 2005, 26(11) : 1-6.

[10] YASUKAWA H, SHIMADA S. An Acoustic echo can-celler using subband sampling and decorrelation methods [J]. IEEE Transactions on Signal Processing, 1993, 41(2): 926-930.

[11] FERRARA E. Fast implementations of LMS adaptive filters[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1980, 28(4): 474-475.

[12] SULYMAN A I, ZERGUINE A. Convergence and steady-state analysis of a variable step-size NLMS algorithm [J]. IEEE Transactions on Signal Processing, 2003, 83(6): 1255-1273.

[13] BOLL S. Suppression of acoustic noise in speech using spectral subtraction[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979, 27(2): 113-120.

[14] SOHN J, KIM N S, SUNG W. A statistical model-based voice activity detection [J]. IEEE Signal Processing Letters, 1999, 6 (1): 13.

[15] MARTIN R. Noise power spectral density estimation based on optimal smoothing and minimum statistics [J]. IEEE Transactions on Speech and Audio Processing, 2001, 9(5): 504-512.

[16] MARTIN R. Bias compensation methods for minimum statistics noise power spectral density estimation [J], Signal Processing, 2006, 86(6): 1215-1229.

No related articles found!