Please wait a minute...
J4  2013, Vol. 47 Issue (6): 1114-1119    DOI: 10.3785/j.issn.1008-973X.2013.06.026
化学工程     
Au/TS-1催化剂上葡萄糖氧化
唐月, 朱明乔, 黄霖, 王萌, 陈新志
浙江大学 化学工程与生物工程学系,浙江 杭州 310027
Glucose oxidation over Au/TS-1 catalyst
TANG Yue, ZHU Ming-qiao, HUANG Lin, WANG Meng, CHEN Xin-zhi
Department of Chemical and Biological Engineering, Zhejaing University, Hangzhou 310027, China)
 全文: PDF  HTML
摘要:

针对传统的生物发酵法制备葡萄糖酸钠周期长、选择性低、温度控制要求高等缺点,采用3种方法制备了Au/TS-1催化剂,进行比表面积(BET)测定、X射线衍射(XRD)和透射电镜(TEM)表征,用于以氧气为氧化剂葡萄糖氧化制备葡萄糖酸钠,评价了催化性能,并进行反应条件影响考察.结果显示:使用沉积沉淀法制备的质量分数为4%的Au/TS-1催化效果最佳,纳米金颗粒大小在10~20 nm,纳米金颗粒分布均匀,其最佳反应条件为60 ℃,pH 9.5,氧气流量为40 mL/min,催化剂0.18 g,水溶液中葡萄糖的质量分数为5%,葡萄糖最快在23 min 内选择性及转化率均可达到100%,但催化剂在第4次重复利用后,其活性降低很快.研究表明:沉积沉淀法能制备一定纳米金颗粒大小的Au/TS-1催化剂,在该多相催化剂上葡萄糖氧化制备葡萄糖酸钠时间短、活性高、选择性好,但稳定性有待提高.

Abstract:

Aiming at the disadvantages of long cycle, low selectivity and high level control of temperature in the production of sodium gluconate by traditional biological fermentation method, Au/TS-1 nano catalysts were prepared by three kinds of method and characterized by surface area and pore volume using nitrogen adsorption using BET method, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalytic performance of the catalysts used in oxidation of glucose to sodium gluconate using oxygen as an oxidant was evaluated, and effects of reaction conditions were investigated. The results showed that the Au/TS-1 catalyst with gold mass fraction of 4% prepared by deposition precipitation (DP) method was the best catalyst with the uniform nano gold mean particle size of 10-20 nm, and the optimum reaction conditions were at 60 ℃, pH of 9.5, oxygen flowrate of 40 mL/min, catalyst weight of 0.18 g, and glucose mass fraction of 5%, at which the glucose conversion of 100% and the sodium gluconate selectivity of 100% could be obtained at 23 min, but the catalytic activity was decreased rapidly after the fourth reuse. It is concluded that the heterogeneous Au/TS-1 catalysts prepared by DP method with a given size of nano gold particle show advantages of short cycle, high activity and good selectivity, but their stability needs to be improved.

出版日期: 2013-11-22
:  O 643.32  
基金资助:

浙江省自然科学基金资助项目(Y4080247)|浙江省自然科学基金杰出青年团队资助项目(R40903580)|广西石化资源加工及过程强化技术重点实验室开放课题基金资助项目(K002).

通讯作者: 朱明乔,男,副教授.     E-mail: zhumingqiao@zju.edu.cn
作者简介: 唐月(1987—),女,硕士生,从事绿色催化研究.E-mail: forxiaoyue@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

唐月, 朱明乔, 黄霖, 王萌, 陈新志. Au/TS-1催化剂上葡萄糖氧化[J]. J4, 2013, 47(6): 1114-1119.

TANG Yue, ZHU Ming-qiao, HUANG Lin, WANG Meng, CHEN Xin-zhi. Glucose oxidation over Au/TS-1 catalyst. J4, 2013, 47(6): 1114-1119.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.06.026        http://www.zjujournals.com/eng/CN/Y2013/V47/I6/1114

[1] KARSKI S, WITONSKA I. The effect of bismuth added to Pd/SiO2 on the catalytic system properties in the oxidation of glucose[J]. Przemysl Chemiczny, 2002, 81(11): 713-715.

[2] KARSKI S. Activity and selectivity of Pd-Bi/SiO2 catalysts in the light of mutual interaction between Pd and Bi[J]. Journal of Molecular Catalysis A: Chemical, 2006, 253(1/2): 147-154.

[3] LIANG X, LIU C J, KUAI P. Selective oxidation of glucose to gluconic acid over argon plasma reduced Pd/Al2O3[J]. Green Chemistry, 2008, 10(12): 1318-1322.

[4] 宋一兵, 陈德平, 孙长勇, 等. Co改性Pd/C催化的葡萄糖催化氧化反应[J]. 宁夏大学学报:自然科学版, 2003, 24(01): 84-87.

SONG Y B, CHEN D P, SUN C Y, et al. Study on the catalytic oxidation of glucose over the catalyst Pd-Co/C[J]. Journal of Ningxia University :Natural Science Edition, 2003, 24(01): 84-87.

[5] MIRESCU A, BERNDT H, MARTIN A, et al. Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions[J]. Applied Catalysis A: General, 2007, 317(2): 204-209.

[6] BESSON M, GALLEZOT P. Selective oxidation of alcohols and aldehydes on metal catalysts[J]. Catalysis Today, 2000, 57(1/2): 127-141.

[7] COMOTTI M, PINA C D, MATARRESE R, et al. The catalytic activity of “naked” gold particles[J]. Angewandte Chemie, 2004, 43(43): 5812-5815.


[8] BELTRAME P, COMOTTI M, DELLA C, et al. Aerobic oxidation of glucose: II. Catalysis by colloidal gold[J]. Applied Catalysis A: General, 2006, 297(1): 1-7.

[9] LUO W, ZHU C, SU S, et al. Self-catalyzed, self-limiting growth of glucose oxidase mimicking gold nanoparticles[J]. American Chemical Society, 2010, 4(12): 7451-7458.

[10] ZHENG X, LIU Q, JING C, et al. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization[J]. Angewandte Chemie International Edition, 2011, 50(50): 11994-11998.

[11] OKUMURA M. NAKAMURA S, TSUBOTA S, et al. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2[J]. Catalysis Letters, 1998, 51(1): 53-58.

[12] BIELLA S, CASTIGLIONI G L, FUMAGALLI C, et al. Application of gold catalysts to selective liquid phase oxidation[J]. Catalysis Today, 2002, 72(1/2): 43-49.

[13] 罗淑文,陈彤,曾毅,等.钛硅介孔分子筛[J].化学进展,2008,20(2/3): 212-220.

LUO Shu-wen, CHEN Tong, ZENG Yi, et al. Titanium-silicate mesoporous molecular sieves[J]. Progress in Chemistry, 2008, 20(2/3): 212-220.

[14] BAATZ C, DECKER N, PRΒE U. New innovative gold catalysts prepared by an improved incipient wetness method[J]. Journal of Catalysis, 2008, 258(1): 165-169.

[15] NAL Y, SCHIMPF S, CLAUS P. Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts[J]. Journal of Catalysis, 2004, 223(1): 122-133.

No related articles found!