[1] ARAUJO J D P, GRANDE C A, RODRIGUES A E. Vanillin production from lignin oxidation in a batch reactor[J]. Chemical Engineering Research & Design, 2010, 88(8A): 1024-1032.
[2] KLEIN M T, VLRK P S. Model pathways in lignin thermolysis. 1. Phenethyl phenyl ether[J]. Industrial & Engineering Chemistry Fundamentals, 1983, 22(1): 35-45.
[3] JARVIS M W, DAILY J W, CARSTENSEN H. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether[J]. Journal of Physical Chemistry, 2011, 115(4): 428-438.
[4] PARK H W, PARK S, PARK D R, et al. Decomposition of phenethyl phenyl ether to aromatics over CsxH3.0-xPW12O40 (x=2.0~3.0) heteropolyacid catalysts[J]. Catalysis Communications, 2010, 12(1): 1-4.
[5] BESTE A, BUCHANAN A C. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers[J]. Energy & Fuels, 2010, 24: 2857-2867.
[6] WU You-yu, FU Zai-hui, YIN Du-lin, et al. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids[J]. Green Chemistry, 2010, 12(4): 696-700.
[7] GONG Gui-fen, LIU Dan-yu, HUANG Yu-dong. Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw[J]. Biosystems Engineering, 2010, 107(2): 67-73.
[8] ZHANG Ze-hui, ZHAO Z K. Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid[J]. Carbohydrate Research, 2009, 344(15): 2069-2072.
[9] BADAMALI S K, LUQUE R, CLARK J H, et al. Microwave assisted oxidation of a lignin model phenolic monomer using Co(salen)/SBA-15[J]. Catalysis Communications, 2009, 10(6): 1010-1013.
[10] BADAMALI S K, CLARK J H, BREEDEN S W. Microwave assisted selective oxidation of lignin model phenolic monomer over SBA-15[J]. Catalysis Communications, 2008, 9(13): 2168-2170. |