Please wait a minute...
J4  2013, Vol. 47 Issue (6): 1104-1108    DOI: 10.3785/j.issn.1008-973X.2013.06.024
化学工程     
微波辅助苯乙基苯醚催化降解反应动力学
潘晶莹, 熊俊, 吕秀阳
浙江大学 生物质化工教育部重点实验室,浙江 杭州 310027
Kinetics study on microwave-assisted catalytic decomposition of  phenylethyl phenyl ether
PAN Jing-ying, XIONG Jun, LV Xiu-yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

以苯乙基苯醚(PPE)为木质素模型物质,四氢萘为溶剂和供氢剂,对甲苯磺酸(PTSA)为催化剂,研究PPE在微波和四氢萘作用下的降解规律,总结了微波对降解反应的影响并推断PPE在四氢萘和PTSA作用下的降解机理.高效液相识谱法的分析结果表明:随着PPE初始质量密度的升高,PPE的转化率有所下降|随着PTSA质量密度的升高,PPE的转化率也不断升高.相对于普通的热传导加热,微波对PPE的催化降解反应起到了比较明显的促进作用,降解反应的表观活化能下降了27.7%.

Abstract:

Employing phenylethyl phenyl ether (PPE) as a lignin model compound, tetralin as a solvent and hydrogen-donor, toluene-4-sulfonic acid (PTSA) as a catalyst, the regularity of decomposition of PPE was studied with the microwave and tetralin. The effect of microwave to the reaction was discussed and a possible mechanism on the degradation with the microwave and tetralin was presented. The HPLC results indicated that the conversion of PPE decreased with the increase of initial mass density of PPE and was improved with the increase of mass density of PSTA. Compared to reactions with traditional heat conduction, microwave irradiation promoted the decomposition reaction of PPE significantly, and the apparent activation energy for PPE decomposition with microwave decreased by 27.7%.

出版日期: 2013-11-22
:  TQ 35  
基金资助:

国家自然科学基金资助项目(20976160,21176218)|国家“863”高技术研究发展计划资助项目(2012AA040211).

通讯作者: 吕秀阳,男,教授.     E-mail: luxiuyang@zju.edu.cn
作者简介: 潘晶莹(1987—),女,博士生.从事木质素降解制备酚类化合物研究.E-mail: pjycrystal@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

潘晶莹, 熊俊, 吕秀阳. 微波辅助苯乙基苯醚催化降解反应动力学[J]. J4, 2013, 47(6): 1104-1108.

PAN Jing-ying, XIONG Jun, LV Xiu-yang. Kinetics study on microwave-assisted catalytic decomposition of  phenylethyl phenyl ether. J4, 2013, 47(6): 1104-1108.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.06.024        http://www.zjujournals.com/eng/CN/Y2013/V47/I6/1104

[1] ARAUJO J D P, GRANDE C A, RODRIGUES A E. Vanillin production from lignin oxidation in a batch reactor[J]. Chemical Engineering Research & Design, 2010, 88(8A): 1024-1032.

[2] KLEIN M T, VLRK P S. Model pathways in lignin thermolysis. 1. Phenethyl phenyl ether[J]. Industrial & Engineering Chemistry Fundamentals, 1983, 22(1): 35-45.

[3] JARVIS M W, DAILY J W, CARSTENSEN H. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether[J]. Journal of Physical Chemistry, 2011, 115(4): 428-438.

[4] PARK H W, PARK S, PARK D R, et al. Decomposition of phenethyl phenyl ether to aromatics over CsxH3.0-xPW12O40 (x=2.0~3.0) heteropolyacid catalysts[J]. Catalysis Communications, 2010, 12(1): 1-4.

[5] BESTE A, BUCHANAN A C. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers[J]. Energy & Fuels, 2010, 24: 2857-2867.

[6] WU You-yu, FU Zai-hui, YIN Du-lin, et al. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids[J]. Green Chemistry, 2010, 12(4): 696-700.

[7] GONG Gui-fen, LIU Dan-yu, HUANG Yu-dong. Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw[J]. Biosystems Engineering, 2010, 107(2): 67-73.

[8] ZHANG Ze-hui, ZHAO Z K. Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid[J]. Carbohydrate Research, 2009, 344(15): 2069-2072.

[9] BADAMALI S K, LUQUE R, CLARK J H, et al. Microwave assisted oxidation of a lignin model phenolic monomer using Co(salen)/SBA-15[J]. Catalysis Communications, 2009, 10(6): 1010-1013.

[10] BADAMALI S K, CLARK J H, BREEDEN S W. Microwave assisted selective oxidation of lignin model phenolic monomer over SBA-15[J]. Catalysis Communications, 2008, 9(13): 2168-2170.

No related articles found!