Please wait a minute...
J4  2013, Vol. 47 Issue (6): 1036-1042    DOI: 10.3785/j.issn.1008-973X.2013.06.015
计算机技术     
无阀微泵非稳态特性及整流效率仿真
曹超, 应济, 焦致凯
浙江大学 机械工程学系,浙江 杭州 310027
Simulation of unsteady characteristics and rectification efficiency of valveless micropump
CAO Chao, YING Ji, JIAO Zhi-kai
Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

根据能量耗散和压强降低原理,分别研究了扩张/收缩管无阀微泵所处非稳态情况下流量变化与总压损失和压强损失之间的关系.为获得扩张/收缩管组件内流体流动在谐波压强下的非稳态响应特性,利用有限元软件在不同Womersley数以及压强幅值分别为10、30、50 kPa条件下对扩张角为7.0°、9.8°、13.0°的扩张/收缩管组件进行数值模拟.仿真结果显示,Womersley数越大,流量变化相对于压强的滞后越大,压强幅值越大,流量变化相对于压强的滞后越小.当压强幅值为30、50 kPa,Womersley数相对较小时,在扩张管组件内会有流量峰值随Womersley数的增加而递增的现象出现.随着驱动频率的变化,整流效率存在一峰值,且压强幅值越大整流效率的峰值以及峰值处对应的Womersley数也越大.

Abstract:

According to the principle of energy dissipation and pressure loss, this work studied the relationships between the change of flow with total pressure loss and pressure loss of diffuser/nozzle valveless micropump in the case of unsteady condition. In order to obtain the unsteady response characteristics of fluid flow that in diffuser/nozzle component which its divergence angle was 7.0°, 9.8°, 13.0° under different Womersley number and harmonic pressures which its amplitude was 10,30 and 50 kPa, analysis was performed by the finite element software. Simulation results shows that: greater the Womersley number, the change of the flow which relate to the lag of the pressure will greater|greater the pressure amplitude,the change of the flow which relate to the lag of the pressure will decrease. When the pressure amplitude is 30,50 kPa, the phenomenon that the peak of flow increases with the increase of Womersley number will occur in the diffuser component when Womersley number is relatively small. With the change of driving frequency, the rectification efficiency exists an optimal value. The peak of rectification efficiency and Womersley number in this peak place will rise with the increase of pressure amplitude.

出版日期: 2013-11-22
:  TH 38  
基金资助:

国家自然科学基金资助项目(50475104)|浙江省自然科学基金重点资助项目(Z106519).

通讯作者: 应济,男,副研究员.     E-mail: yingji_zju@yahoo.cn
作者简介: 曹超(1986—),男,硕士生,主要从事微机电系统设计与建模方面的研究.E-mail: caocao00@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

曹超, 应济, 焦致凯. 无阀微泵非稳态特性及整流效率仿真[J]. J4, 2013, 47(6): 1036-1042.

CAO Chao, YING Ji, JIAO Zhi-kai. Simulation of unsteady characteristics and rectification efficiency of valveless micropump. J4, 2013, 47(6): 1036-1042.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.06.015        http://www.zjujournals.com/eng/CN/Y2013/V47/I6/1036

[1] LASER J D,SANTIAGO G J. A review of micropumps [J]. Journal of Micromechanics Microengineering, 2004, 14(6): 35-64.

[2] WOIAS P. Micropumps-past,progress and future prospects [J]. Sensors and Actuators B,2005, 105(1): 28-38.

[3] NABAVI M, SIDDIQUI K. A critical review on advanced velocity measurement techniques in pulsating flows [J]. Measurement Science and Technology, 2010, 21(4) : 1-19.

[4] SUN C L, HUANG K H. Numerical characterization of the flow rectification of dynamic microdiffusers [J]. Journal of Micromechanics and Microengineering, 2006, 16 (7): 1331-1339.

[5] WANG C T, LEU T S, SUN J M. Unsteady analysis of microvalves with no moving parts [J]. Journal of Mechanics,2007, 23(1): 9-14.

[6] NABAVI M, MONGEAU L. Numerical analysis of high frequency pulsating flows through a diffuser-nozzle element in valveless acoustic micropump [J]. Microfluid and Nanofluid , 2009, 7(5): 669-681.

[7] PAN L S.,NG T Y, WU X H, et al. Analysis of valveless micropump with inertial effects [J]. Journal of Micromechanics and Microengineering ,2003,13(3): 390-399.

[8] STEMME E, STEMME G. A valveless diffuser/nozzle based fluid pump [J]. Sensors and Actuators A, 1993, 39(2): 159-169.

[9] SCHLICHTING H,GERSTEN K. Boundary-layer theory [M]. Bochum: Springer,2000: 8.

[10] FRANK M W. Viscous fluid flow [M]. New York: McGraw-Hill Higher Education, 2006: 156.

[11] ANDERSSON H,WIJNGAART W,NILSSON P,et al. A valve-less diffuser micropump for microfluidic analytical systems [J]. Sensors and Actuators B, 2001, 72(3): 259-265.

[12] OLLOSN A,STEMME G, STEMME E. Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps [J]. Sensors and Actuators A , 2000, 84(1/2): 165-175.

[1] 应济, 曹超, 焦致凯. 无阀微泵损失系数及整流效率[J]. J4, 2013, 47(2): 249-255.