Please wait a minute...
J4  2013, Vol. 47 Issue (5): 889-894    DOI: 10.3785/j.issn.1008-973X.2013.05.022
化学与生物工程、环境工程     
电化学氧化法处理氨氮废水的影响因素
丁晶1,舒欣2,赵庆良1
1. 哈尔滨工业大学 市政环境工程学院 城市水资源与水环境国家重点实验室,哈尔滨 150090;
2. 辽宁大学 环境学院,沈阳 110036 
Influencing factors on ammonia removal by electrochemical oxidation treatment
DING Jing1, SHU Xin2, ZHAO Qing-liang1
1. State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental
Engineering, Harbin Institute of Technology, Harbin 150001, China|2. School of Environmental Science,
Liaoning University, Shenyang 110036, China 
 全文: PDF  HTML
摘要:

为了考查电化学氧化对低浓度废水中氨氮的处理效果,研究阴极材料、阳极材料、电流密度、氯离子质量浓度、极板间距、沸石的添加和氨氮的初始质量浓度等影响因素对氨氮和总氮降解的影响,同时比较研究二维和三维电极对氨氮的去除效果.结果表明,电化学氧化法是一种适宜于废水脱氮的技术,较佳的工艺条件为:极板间距1 cm、电流密度5 mA/cm2、阳极RuO2-IrO2-SnO2/Ti、阴极钛网、氯离子质量浓度200 mg/L、改性沸石为粒子电极,在该条件下反应20 min后氨氮的去除率可达95%.与二维电极对比,三维电极是在多种物理化学过程协同作用下完成对氨氮的去除,可以达到更高的氨氮降解效果和电流效率.

Abstract:

To investigate the degradation of low-concentration ammonia in wastewater by electrochemical oxidation, the effect of various operating factors on ammonia and total nitrogen removal were studied. The experimental parameters were anode, cathode material, current density, chloride concentration, electrode gap, initial ammonium concentration and three-dimensional particle. Both the performances of two-dimensional and three-dimensional electrode were discussed. The results show that electrochemical oxidation is suitable to degrade ammonia from wastewater, and the optimum operating parameters are 1 cm electrode gap, 5 mA/cm2 current density, 200 mg/L chloride concentration, RuO2-IrO2-SnO2/Ti as anode, titanium mesh as cathode, and modified zeolite as three-dimensional particle. Under the optimal conditions, 95% of ammonia is removed after 20 minutes' electrochemical oxidation. The synergetic effects of several physical-chemical processes achieve ammonia removal in the three-dimensional system. Compared to two-dimensional system, ammonia removal and current efficiency are higher in three-dimensional system. 

出版日期: 2013-05-01
:  X 5  
基金资助:

水体污染控制与治理科技重大专项资助项目(2012ZX07201003-002).

通讯作者: 赵庆良,男,教授,博导.     E-mail: zhql1962@163.com
作者简介: 丁晶(1987-),女,博士生,从事氨氮深度处理方向研究.E-mail:wateresdj@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

丁晶,舒欣,赵庆良. 电化学氧化法处理氨氮废水的影响因素[J]. J4, 2013, 47(5): 889-894.

DING Jing, SHU Xin, ZHAO Qing-liang. Influencing factors on ammonia removal by electrochemical oxidation treatment. J4, 2013, 47(5): 889-894.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.05.022        http://www.zjujournals.com/eng/CN/Y2013/V47/I5/889

[1] SZPYRKOWICZ L, NAUMCZYK F, ZILIO-GRANDI F. Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes [J]. Water Research, 1995, 29 (2):517-524.
[2] VLYSSIDES A G , KARLIS P K, RORI N, et al. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes[J]. Journal of Hazardous Materials, 2002, 95(1/2):215-226.
[3] ANGLADA A, URTIAGA A, ORTIZ I, Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes [J]. Environmental Science & Technology, 2009, 43, 2035-2040.
[4] VANLANGENDONCK Y, CORBISIER D, VAN LIERDE A. Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants [J]. Water Research, 2005, 39(13):30283034.
[5] XIE Z M., LI X Y, CHAN K Y. Nitrogen removal from the saline sludge liquor by electrochemical denitrification [J]. Water Science and Technology, 2006, 54(8): 171179.
[6] 杨慧敏,何绪文,何咏.电化学氧化法处理微污染水中的氮[J].环境化学,2010,29(3):491-495.
YANG Hui-min, HE Xu-wen, HE Yong. Rmoval of nitrogen in the micro-polluted water by electrochemical oxidation process [J]. Environmental Chemistry, 2010, 29(3):491-495.
[7] LI L, LIU Y. Ammonia removal in electrochemical oxidation: mechanism and pseudo-kinetics [J]. Journal of Hazardous Materials, 2009,161 (2/3), 1010-1016.
[8] 熊英健,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998, 18 (1):5-8.
XIONG Ying-jian, FAN Juan, ZHU Xi-hai. Progress and prospect of research in three-dimension electrode [J]. Industrial water treatment, 1998, 18 (1):58.
[9] RAO N N, ROHIT M, NITIN G, et al. Kinetics of electrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reactor [J]. Chemosphere, 2009, 76(9): 12061212.
[10] WU X, YANG X, WU D, et al. Feasibility study of carbon aerogel as particle electrodes for decolorization of RBRZ dye solution in a three-dimensional electrode reactor [J]. Chemical Engineering Journal, 2008, 138: 47-54.
[11] WANG L, FU J, QIAO Q, et al. Kinetic modeling of electrochemical degradation of phenol in a three dimension electrode process [J]. Journal of Hazardous Materials, 2007, 144(1/2): 118-125.
[12] WANG B, KONG W, MA H. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode [J]. Journal of Hazardous Materials, 2007, 146(1/2):295-301.
[13] ZHANG H, LI Y, WU X G, et al. Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor [J]. Waste Management, 2010, 30(11):2096-2102.
[14] APHA. Standard methods for the examination of water and wastewater [S] 19th ed.  Washington, DC: American Public Health Association/ American Water Works Association/Water Environment Federation, 1998.
[15] CHIANG L C, CHANG J E, WEN T C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate [J]. Water Research, 1995,29(2):671-678.
[16] 余峰,马香娟,吴祖成.电化学法处理含盐有机废水研究进展[J].水处理技术,2010,36(12):610.
Yu Feng, Ma Xiang-juan,Wu Zu-cheng. Electrochemical treatment of organic wastewater containing salt[J]. Technology of water treatment, 2010,36(12):6-10.
[17] 陈金銮.氨氮的电化学氧化技术及其应用研究[D].北京:清华大学,2008.
CHEN Jin-luan. Study and application of electrochemical oxidation technology for ammonia removal [D].Beijing: Tsinghua Universtity,2008.
[18] ISRAILIDES C J, VLYSSIDES A G, MOURAFETI V N, et al. Olive oil wastewater treatment with the use of an electrolysis system[J]. Bioresource Technology, 1997, 61(2): 163-170.

[1] 陈永铎, 王晓晨, 李颖, 朱安娜, 刘振, 闫克平. 等离子体辅助Fenton洗消甲基膦酸二甲酯水溶液[J]. J4, 2013, 47(12): 2195-2201.
[2] 丁春生, 张涛, 徐洋洋, 贡飞. 铁还原去除饮用水中三氯硝基甲烷的性能研究[J]. J4, 2013, 47(12): 2202-2207.
[3] 曾宇翾, 沈欣军, 章旭明, 刘振,闫克平. 电除尘器中离子风的实验研究[J]. J4, 2013, 47(12): 2208-2211.
[4] 黄更,姜珺秋,赵庆良,于航,王琨. 生物产电加速厌氧堆肥污泥降解及产电性能[J]. J4, 2013, 47(5): 883-888.
[5] 王磊,王重华,宁平,蒋明,覃扬颂. Ca(OH)2黏土混合物的固磷固硫作用[J]. J4, 2013, 47(5): 874-882.
[6] 黄镇宇, 孙勇, 陈丰, 杨卫娟, 陈镇超, 周俊虎, 岑可法. 125 MW电站煤粉锅炉SNCR试验研究[J]. J4, 2012, 46(10): 1778-1783.
[7] 王海涛,杨卫娟,周俊虎,王智化,刘建忠,岑可法. 液滴在高温气流中蒸发混合特性计算分析[J]. J4, 2011, 45(5): 878-884.
[8] 孟亚锋, 汪大翚. 有机物质对铁还原降解四氯化碳的影响[J]. J4, 2010, 44(12): 2406-2410.
[9] 何胜, 周劲松, 朱燕群, 骆仲泱, 倪明江, 岑可法. 钒系SCR催化剂对汞形态转化的影响[J]. J4, 2010, 44(9): 1773-1780.
[10] 金晗辉, 李清平, 陈丽华, 樊建人, 吕琳. 室内悬浮颗粒物分布及输运特性的实验研究[J]. J4, 2010, 44(9): 1793-1797.
[11] 邹学权, 徐新华, 史惠祥, 汪大翚. 2,4-二氯苯酚在炭载铜和铁催化剂上的微波降解[J]. J4, 2010, 44(3): 606-611.
[12] 吕洪坤, 杨卫娟, 周俊虎, 等. 电站锅炉选择性非催化还原脱硝实验研究
——还原区温度、尿素溶液喷射体积流量的影响
[J]. J4, 2009, 43(09): 1655-1660.