Please wait a minute...
J4  2013, Vol. 47 Issue (1): 146-153    DOI: 10.3785/j.issn.1008-973X.2013.01.021
土木工程     
合成射流物理参数对控制翼型流动分离的影响
刘峰, 邹建锋, 郑耀
浙江大学 航空航天学院,浙江 杭州 310027
Effect of synthetic jets physical parameters on
flow separation control over airfoil
LIU Feng, ZOU Jian-feng, ZHENG Yao
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

应用计算流体力学(CFD)技术数值模拟了合成射流对NACA0015翼型流动控制的影响.合成射流施加的位置分别距离翼型前缘12%c、30%c和70%c(c为翼型的弦长),研究分析在不同位置施加合成射流,控制流动分离的效果随攻角和射流偏角的变化趋势,对组合射流的位置、相位角和动量系数进行研究.以二维不可压非定常Reynolds-averaged Navier-Stokes(RANS)方程模拟非定常分离流动,采用SST湍流模型,压力修正采用压力隐式算子分裂(PISO)算法,时间积分采用隐式处理方法,空间离散采用二阶迎风格式.通过对数值模拟结果的分析表明:1)12%c、30%c和70%c等对应的射流情形,采用切向射流均优于法向射流的控制效果; 2)对于组合射流和单一射流,射流位置应靠近分离点或在分离点之前,才能达到流动控制的目的,射流位置越靠近分离点流动控制效果越佳;3)组合射流选择合适的相位角,可以增强流动控制的效果.

Abstract:

The effect of synthetic jets on controlling flow separation over a NACA0015 airfoil was numerically analyzed using computational fluid dynamic (CFD) method. The synthetic jets were located at 12%c, 30%c and 70%c, respectively, from the leading edge (c is the chord length of the airfoil). The trends of flow separation control effect at these locations with the variation of angle of attack (AOA) and jet angle were analyzed. Meanwhile, the locations, phase angle and momentum coefficient of multi-location synthetic jets were analyzed. The two-dimensional unsteady incompressible NavierStokes equations were used to simulate unsteady separated flows. SST turbulence model was utilized for the computation, and the pressureimplicit with splitting of operators (PISO) algorithm was utilized for pressure correction. An implicit numerical treatment was adopted for time integral and the second order upwind scheme for space discretization. The numerical results show that: 1) when synthetic jets are located at 12%c, 30%c and 70%c from the leading edge, the tangential jet shows better control effect than normal jet; 2) for single and multi-location synthetic jets, the jet locations should be close to the separation point or prior to the separation point, only in this occasion can the purpose of flow control be achieved, and the closer the jet locations to the separation point, the better control effect can be expected; 3) the performance of multi-location synthetic jets can be improved by changing phase angle of multi-location synthetic jets.

出版日期: 2013-01-01
:  V 211.3  
基金资助:

 MARS中欧航空合作流动控制项目资助;国家自然科学基金资助项目(10702064);中央高校基本科研业务费专项资金资助项目(2012FZA4026).

通讯作者: 邹建锋,男,副研究员.     E-mail: zoujianfeng@zju.edu.cn
作者简介: 刘峰(1987-),男,硕士生,从事计算流体力学的研究. E-mail:kkseeworld@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘峰, 邹建锋, 郑耀. 合成射流物理参数对控制翼型流动分离的影响[J]. J4, 2013, 47(1): 146-153.

LIU Feng, ZOU Jian-feng, ZHENG Yao. Effect of synthetic jets physical parameters on
flow separation control over airfoil. J4, 2013, 47(1): 146-153.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.01.021        http://www.zjujournals.com/eng/CN/Y2013/V47/I1/146

[1] SEIFERT A, DARABI A, WYGNANSKI I J. Delay of airfoil stall by periodic excitation [J]. Journal of Aircraft, 1996, 33(4): 691-698.
[2] GREENBLATT D, WYGNANSKI I J. The control of flow separation by periodic excitation [J]. Progress in Aerospace Sciences, 2000, 36(7): 487-545.
[3] GILARRANZ J L, TRAUB L W, REDINIOTIS O K. Characterization of a compact, highpower synthetic jet actuator for flow separation control [J]. AIAA Paper,2002, 127.
[4] GILARRANZ J L, TRAUB L W, REDINIOTIS O K. A new class of synthetic jet actuators: Part II: application to flow separation control [J]. Journal of Fluids Engineering, 2005, 127(2): 377-387.
[5] SIAUW W L, BONNET J P, TENSI J, et al. Transient dynamics of the flow around a NACA0015 airfoil using fluidic vortex generators [J]. International Journal of Heat and Fluid Flow, 2010, 31(3): 450-459.
[6] DONOVAN J F, KRAL L D, CARY A W. Active flow control applied to an airfoil [J]. AIAA Paper, 1998, 2-10.
[7] DUVIGNEAU R, VISONNEAU M. Simulation and optimization of stall control for an airfoil with a synthetic jet [J]. Aerospace Science and Technology, 2006, 10(4): 279-287.
[8] YOU D, MOIN P. Active control of flow separation over an airfoil using synthetic jets [J]. Journal of Fluids and Structures, 2008, 24(8): 1349-1357.
[9] GEISSLER W. A family of CFD boundary conditions to simulate separation control [J]. Aerospace Science and Technology, 2010, 14(7): 494-504.
[10] REHMAN A, KONTIS K. Synthetic jet control effectiveness on stationary and pitching airfoils [J]. Journal of Aircraft, 2006, 43(6): 1782-1789.
[11] KIM S H, KIM C. Separation control on NACA23012 using synthetic jet [J]. Aerospace Science and Technology, 2009, 13(4/5): 172182.
[12] 顾蕴松,明晓. 应用 PIV 技术研究 “零质量” 射流的非定常流场特性[J]. 实验流体力学, 2005, 19(1): 83-86.
GU Yun-song, MING Xiao. Investigation on the characteristics and structures of unsteady flow field near the zeromass flux jet with PIV [J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 83-86.
[13] 洪俊武,陈晓东,张玉伦,等. 主动流动控制技术的初步数值研究[J]. 空气动力学学报, 2005, 23(4): 402-407.
HONG Jun-wu, CHEN Xiao-dong,ZHANG Yu-lun, et al. The primary numerical research of active control technology in flow [J]. Acta Aerodynamica Sinica, 2005, 23(4): 402-407.
[14] 肖中云,牟斌,陈作斌,等. 零质量射流与分离控制的数值模拟[J]. 空气动力学学报, 2006, 24(1): 46-50.
XIAO Zhong-yun, MOU Bin, CHEN Zuo-bin, et al. Compressible simulation of active flow control using synthetic jets [J]. Acta Aerodynamica Sinica, 2006, 24(1): 46-50.
[15] 罗振兵,夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221-234.
LUO Zhen-bing, XIA Zhi-xun. Advances in synthetic jet technology and applications in flow control [J]. Advances in Mechanics, 2005, 35(2): 221-234.
[16] 韩忠华,宋文萍,乔志德. YLSG107 高升力翼型主动流动控制的数值模拟[J]. 计算物理, 2009, 26(6): 837-841.
HAN Zhong-hua, SONG Wen-ping, QIAO Zhi-de. Numerical simulation of active stall control on highlift airfoil [J]. Chinese Journal of Computational Physics, 2009, 26(6): 837-841.
[17] 韩忠华,乔志德,宋文萍. 合成射流推迟翼型失速的数值模拟[J]. 航空学报, 2007, 28(5): 1040-1046.
HAN Zhong-hua, QIAO Zhi-de, SONG Wen-ping. Numerical simulation of active flow control to airfoil stall using local synthetic jet [J]. Acta Aeronautica Et Astronautica Sinica, 2007, 28(5): 10401046.
[18] 韩忠华,宋文萍,乔志德. OA212 翼型主动流动控制的数值模拟研究[J]. 空气动力学学报, 2009, 27(6): 639-644.
HAN Zhong-hua, SONG Wen-ping, QIAO Zhi-de. Numerical simulation of active dynamic stall control on an OA212 rotor airfoil [J]. Acta Aerodynamica Sinica, 2009, 27(6): 639-644.
[19] 张攀峰,王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报, 2008, 34(4): 443-446.
ZHANG Pan-feng, WANG Jin-jun. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in recirculation region [J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(4): 443-446.
[20] 石清,李桦. 零净质量射流的数值模拟[J]. 空气动力学学报, 2011, 29(1): 114-117.
SHI Qing, LI Hua. Numerical simulation of the zero mass jet flow [J]. Acta Aerodynamica Sinica, 2011, 29(1): 114-117.

[1] 杨茂,徐珊珊. 耦合运动的襟翼-翼型气动特性数值仿真[J]. J4, 2014, 48(1): 149-153.