Please wait a minute...
J4  2013, Vol. 47 Issue (1): 102-108    DOI: 10.3785/j.issn.1008-973X.2013.01.015
机械与能源工程     
自适应双重点阵DOT图像重建
王嵩1, 上田之雄2, 山下丰2, 刘华锋1
1.浙江大学 现代光学仪器国家重点实验室,浙江 杭州 310027;2.日本滨松光子学株式会社中央研究所,
静冈县 滨松市 430-8587
Selfadoptive dual node-set DOT image reconstruction
WANG-Song1, UEDA Yukio2, YAMASHITA Yutaka2, LIU Hua-feng1
1. State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China;
2. Central Research Laboratory of Hamamatsu Photonics K.K., Hamamatsu,Shizuoka  4308587, Japan
 全文: PDF  HTML
摘要:

引入无网格方法替代传统有限元方法(FEM),求解弥散光学层析成像(DOT)正问题,避免了FEM需要人工根据实际形状生成和调整网格的繁琐过程.优化形函数及各项参数,得到精确解.在求解逆问题时引入第2重较稀疏自适应点阵,能够根据重建迭代过程中的结果自适应调整分布和密度,一方面较大限度地减少了计算消耗,提高计算速度,另一方面抑制了问题的病态性,能够得到更鲁棒的结果.逆问题二维仿真实验表明,在噪声抑制、图像分辨率、网格依赖性方面该方法均优于传统方法.三维仿真实验和实物体模实验结果进一步体现了该方法的优势.

Abstract:

The mesh free method was employed to solve forward problem of diffuse optical tomography (DOT) image reconstruction. The burdensome mesh generation work of the finite element method (FEM) was avoided. The shape function and related coefficients of mesh free method were optimized for the very problem. In the inverse problem, a second self-adoptive sparse node set was utilized to reduce the calculation consumption and suppress the illness of the problem. The advantages in respects of noise suppression, reconstructed image resolution, mesh dependence of the proposed method were proved in two-dimensional simulation experiments. The results of three-dimensional and phantom experiments reinforced the conclusion.

出版日期: 2013-01-01
:  TH 773  
基金资助:

国家“973”重点基础研究发展规划资助项目(2010CB732504);国家自然科学基金资助项目(60872068)

通讯作者: 刘华锋,男,教授,博导.     E-mail: liuhf@zju.edu.cn
作者简介: 王嵩(1984-),男,博士生,从事生物医学图像、正电子层析成像、弥散光学成像研究.E-mail: augustus.wang@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王嵩, 上田之雄, 山下丰, 刘华锋. 自适应双重点阵DOT图像重建[J]. J4, 2013, 47(1): 102-108.

WANG-Song, UEDA Yukio, YAMASHITA Yutaka, LIU Hua-feng. Selfadoptive dual node-set DOT image reconstruction. J4, 2013, 47(1): 102-108.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.01.015        http://www.zjujournals.com/eng/CN/Y2013/V47/I1/102

[1] BOAS D A, BROOKS D H, MILLER E L, et al. Imaging the body with diffuse optical tomography [J]. IEEE Signal Processing Magazine, 2001, 18(6): 57-75.
[2] DEHGHANI H, SRINIVASAN S, POGUE B W, et al. Numerical modeling and image reconstruction in diffuse optical tomography [J]. Philosophical Transactions of the Royal Society A, 2009, 367(1900): 2073-3093.
[3] QIN Cheng-hu, TIAN Jie, YANG Xin, et al. Galerkin-based meshless methods for photon transport in the biological tissue [J]. Optics Express, 2008, 16(25): 20317-20333.
[4] BARITAUX J, SEKHAR S C, UNSER M. A spline-based forward model for optical diffuse tomography [C] ∥Biomedical Imaging: From Nano to Macro. Paris: [s. n.], 2008: 384-387.
[5] WANG Song, UEDA Y, LIU H. Meshfree strategy for diffuse optical tomography image reconstruction [C]∥ Medical Image Analysis and Clinical Applications (MIACA). Guangdong: [s.n.], 2010: 87-90.
[6] PAULSEN K D, MEANEY P M, MOSKOWITZ M J, et al. A dual mesh scheme for finite element based reconstruction algorithms [J]. IEEE Transactions on Medical Imaging, 1995, 14(3): 504-514.
[7] TARVAINEN T, VAUHKONEN M, ARRIDGE S R. Image reconstruction in optical tomography using the finite element solution of the radiative transfer equation [C]∥ Biomedical Optics (BIOMED 2010). Miami, Florida: Sunday Poster Session (BSuD17), 2010.
[8] ARRIDGE S R, SCHWEIGER M, HIRAOKA M. A finite element approach for modeling photon transport in tissue [J]. Medical Physics, 1993, 20(2 Pt 1): 299-309.
[9] BALIMAA O, BOULANGERB J, CHARETTEA A, et al. New developments in frequency domain optical tomography. Part II: application with a L-BFGS associated to an inexact line search [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(7): 1235-1240.
[10] NGUYENA V P, RABCZUKB T, BORDASC S, et al. Meshless methods: a review and computer implementation aspects [J]. Mathematics and Computers in Simulation, 2008, 79(3): 763-813.
[11] DEHGHANI H, EAMES M E, YALAVARTHY P K, et al. Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction [J]. Biomedical Engineering, 2008, 25(6): 711-732.
[12] OKAWA S, ENDO Y, HOSHI Y. Reduction of poisson noise in measured timeresolved data for time-domain diffuse optical tomography [J]. Medical and Biological Engineering and Computing, 2011, 50(1): 69-78.
[13] MCBRIDE T O. Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis [D]. Hanover: Dartmouth College, 2001.
[14] COOPER R J, EAMES R, BRUNKER J, et al. A tissue equivalent phantom for simultaneous near-infrared optical tomography and EEG [J]. Biomedical Optics Express, 2010, 1(2): 425-430.
[15] SCHWEIGER M. GPU-accelerated finite element method for modeling light transport in diffuse optical tomography [J]. International Journal of Biomedical Imaging, 2011, 2011: 403-892.

No related articles found!