Please wait a minute...
J4  2012, Vol. 46 Issue (11): 2121-2127    DOI: 10.3785/j.issn.1008-973X.2012.11.027
化学工程、能源工程     
模板法掺铁金红石纳米管制备与形成机理
胡仙超1,2,王燕飞3,胡素娟1,李国华1,莫卫民1,2
1. 浙江工业大学 化学工程与材料学院,浙江 杭州 310032;2. 浙江工业大学 分析测试中心,浙江 杭州 310032;
3.天台县质量技术监督局,浙江 台州 317200
Preparation and formation mechanism of iron-doped rutile
nanotube prepared by template method
HU Xian-chao1,2, WANG Yan-fei3, HU Su-juan1 , LI Guo-hua1, MO Wei-min1,2
1.College of Chemical Engineering and Materials Science;
2.Research Center of Analysis and Measurement; Zhejiang University of Technology, Hangzhou, 310032;
3.The Quality and Technology supervision bureau of Tiantai, Taizhou, 317200, China
 全文: PDF  HTML
摘要:

以TiCl4为钛源,针铁矿(α-FeOOH)为模板,采用牺牲模板法制备掺铁金红石纳米管,应用X射线衍射(XRD)、透射电镜(TEM)、扫描透射面扫描(STEM EDX-Mapping)和X射线光电子能谱(XPS)等手段对掺铁金红石纳米管的物相、形貌、微结构和化学组成等进行系统地表征.结果表明,在高温条件下制备的掺铁金红石样品颗粒为管状结构,纳米管的物相为纯金红石相,管壁外表面由许多针状体包裹,管的两端封闭,内孔直径60~80 nm;管壁由纳米颗粒构成,并具有明显的层状结构特征;元素分析结果表明,Fe3+均匀地掺入到了金红石晶格中,且金红石晶格形成大量的位错和面缺陷.结合金红石纳米管的微结构特征探讨形成机理:在低温条件下,金红石先包覆于针铁矿外表面,并构成以金红石为壳,针铁矿为核的核壳结构纳米复合材料;随着反应温度从30 ℃上升到90 ℃,载体针铁矿逐渐溶解,包覆于载体针铁矿外表面的金红石逐渐增加;同时,铁离子经扩散而进入金红石晶格,最终载体针铁矿全部溶解而形成掺铁金红石纳米管.

Abstract:

Irondoped rutile nanotube was prepared by a template method, using TiCl4 as titania precursor and goethite (α-FeOOH) as a template. The crystal phase, morphology, microstructure and chemical composition of the samples were characterized by X-ray diffraction(XRD), Transmission electron microscopy(TEM), Scanning transmission electron microscopy(STEM) EDX-Mapping and X-ray photoelectron spectroscopy(XPS). The results show the crystal phase of the Iron-doped rutile sample prepared at high temperature is rutile, the morphology of the sample particle is tube-like, with two tips enclosed and an inner diameter of 60~80 nm, and a lot of needle like particles grow on the outer surface of the nanotube wall, which is constituted of small particles. Element analyses of EDX-mapping results show that iron element distributes homogeneously in the nanotube. The microstructure of the nanotube shows that many displaces and regional defects exist in the lattice of rutile. A formation mechanism of rutile nanotube growth was proposed: rutile nanoparticles grow on the outer surface of needle-like goethite particles and wrap around the goethite particles at lower temperature, thus rutile-goethite composite with coreshell structure forms, in which rutile as a shell layer and goethite as a core; when the preparation temperature rised from 30 ℃ to 90 ℃, the template, goethite is dissolving gradually; at the same time, more and more rutile nanoparticles precipitate onto the outer surface of goethite particle, and iron cations are entering into the lattice of rutile nanoparticles through diffusion; goethite particle is disappearing at last, thus iron doped rutile nanotube forms.

出版日期: 2012-12-11
:  TB 321  
基金资助:

 国家自然科学基金资助项目(21173193);浙江省自然科学基金资助项目(Y4080209,Y4100662);浙江省教育厅科研资助项目(Y201225711).

通讯作者: 李国华,男,教授.     E-mail: nanozjut@zjut.edu.cn
作者简介: 胡仙超(1981-),男,博士,从事无机非金属矿物材料的科研工作.E-mail: huxc@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

胡仙超,王燕飞,胡素娟,李国华,莫卫民. 模板法掺铁金红石纳米管制备与形成机理[J]. J4, 2012, 46(11): 2121-2127.

HU Xian-chao, WANG Yan-fei, HU Su-juan , LI Guo-hua, MO Wei-min. Preparation and formation mechanism of iron-doped rutile
nanotube prepared by template method. J4, 2012, 46(11): 2121-2127.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.11.027        http://www.zjujournals.com/eng/CN/Y2012/V46/I11/2121

[1] LEGRINI O, OLIVEROS E, BRAUN A M. Photochemical processes for watertreatment [J]. Chemical Reviews, 1993, 93(2): 671-698.
[2] KASUGA T, HIRAMATSU M, HOSON A, et al. Formation of titanium oxide nanotube[J]. Langmuir, 1998, 14(12): 3160-3163.
[3] 王芹,陶杰,翁履谦,等.氧化钛纳米管的合成机理与表征[J]. 材料开发与应用, 2004, 19(5): 9-12.
WANG Qin, TAO Jie, WENG Lvqian, et al. Characterization and mechanism of nanotubular TiO2 formation [J]. Development and Application of Materials, 2004, 19(5):9-12.
[4] HOYER P. Formation of a titanium dioxide nanotube array [J]. Langmuir,1996, 12(6): 1411-1413.
[5] 李晓红,张校刚,力虎林.TiO2纳米管的模板法制备及表征[J].高等学校化学学报.2001,22(1):130-132.
LI Xiaohong, ZHANG Xiaogang, LI Hulin. Template synthesis and characterization of TiO2 Nanotubules [J]. Chemical Journal of Chinese Universities, 2001, 22(1): 130-132.
[6] 冯良荣,吕绍洁,邱发礼. 过渡元素掺杂对纳米TiO2光催化剂性能的影响[J]. 化学学报. 2002, 60(3):463-467.
FENG Liangrong, LV Shaojie, QIU Fali. Influence of transition elements dopant on the photocatalytic activities of nanometer TiO2 [J]. Acta Chimica Sinica, 2002, 60(3):463-467.
[7] ZHU Jiefang, CHEN Feng, ZHANG Jinlong, et al. Fe3+TiO2 photocatalysts prepared by combining solgel method with hydrothermal treatment and their characterization [J]. Journal of Photochemistry and Photobiology, 2006, 180(12) : 196-204.
[8] 陈金嫒,彭图治. 磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能[J].化学学报,2004,2(20):2093-2097.
CHEN Jinyuan, PENG Tuzhi. Preparation and properties of a magneticnanometer TiO2/Fe3O4 composite photocatalyst [J]. Acta Chimica Sinica, 2004,2(20):2093-2097.
[9] WU Jinming, QI Bin. Lowtemperature growth of a nitrogendoped titania nanoflower film and its ability to assist photodegradation of rhodamine B in water [J]. Journal of Physical Chemistry C, 2007, 111(2):666-673.
[10] CHEN Xiaobo, MAO Samuel S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007,107(7): 2891-2959.
[11] KRISHNAN V, HEISLBETZ S, NATILE M M, et al. Influence of preparation technique and iron doping on the structure and reactivity of mixed FeTiO nanocomposites [J]. Materials Chemistry and Physics, 2005, 92(2/3): 394-402.
[12] 陈孝云,刘守新,陈曦,等. TiO2/wAC复合光催化剂的酸催化水解合成及表征[J]. 物理化学学报, 2006, 22(5): 517-522.
CHEN Xiaoyun, LIU Shouxin, CHEN Xi, et al. Characterization and activity of TiO2/wAC composite photocatalyst prepared by acid catalyzed hydrolysis method [J]. Acta Phys Chim Sin, 2006, 22(5): 517-522.
[13] HEINEN O D, HOLLANDMORITZ D, HERLACH D M. Phase selection during solidification of undercooled TiFe, TiFeO and TiFeSiO meltsInfluence of oxygen and silicon [J]. Materials Science and Engineering AStructural Materials Properties Microstructure and Processing, 2007, 449(25): 662-665.
[14] BENDER H, CHEN W D, Portillo J, et al. AES and XPS analysis of the interaction of Ti with Si and SiO2 during RTA [J].Applied Surface Science, 1989,38(1/4): 37-47.
[15] PERRON H, VANDENBORRE J, DOMIAN C, et al. Combined investigation of water sorption on TiO2 rutile(110) single crystal face: XPS vs. periodic DFT [J]. Surface Science, 2007, 601(2): 518-527.
[16] XU Weixing, ZHU Shu, FU Xiancai. XPS study of TiOx thin films deposited on glass substrates by the solgel process [J]. Applied Surface Science, 1998, 136(3): 194-205.
[17] HSIUNG T L, WANG H P, WANG H C. XANES studies of photocatalytic active species in nano TiO2SiO2 [J].Radiation Physics Chemistry, 2006,75(11): 2042-2045.
[18] RAEBURN S P, ILTON E S, VEBLEN D R. Quantitative determination of the oxidation state of iron in biotite using Xray photoelectron spectroscopy: I. Calibration [J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4519-4530.
[19] ABDELSAMAD H, WATSON P R. An XPS study of the adsorption of lead on goethite (alphaFeOOH) [J]. Applied Surface Science, 1998, 136(1/2): 46-54.
[20] ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3 [J]. Applied Catalysis BEnvironmental, 2007, 76(1/2):123-134.
[21] KLOPROGGE J T, DUONG L V, WOOD B J, et al. XPS study of the major minerals in bauxite: Gibbsite, bayerite and (pseudo)boehmite [J]. Journal of Colloid and Interface Science, 2006, 296(2): 572-576.

No related articles found!