Please wait a minute...
J4  2012, Vol. 46 Issue (11): 1968-1974    DOI: 10.3785/j.issn.1008-973X.2012.11.005
电气工程     
基于主影响因素的城市时用水量预测
麦志彦1,何中杰2,汪雄海1
1.浙江大学 电气工程学院,浙江 杭州 310027;2.杭州电子科技大学 自动化学院,浙江 杭州 310018
Urban hourly water demand prediction based on principal factors analysis
MAI Zhi-yan1, HE Zhong-Jie2, WANG Xiong-hai1
1.College of Electric Engineering,Zhejiang University,Hangzhou 310027,China;
2.School of automation,Hangzhou Dianzi University,Hangzhou 310018,China
 全文: PDF  HTML
摘要:

针对城市用水量影响因素的多样性、随地域时间多变的特点及与时用水预测时间尺度难匹配的问题,提出基于主影响因素的城市时用水量预测方法。该方法先以改进的灰色关联法对用水量影响因素进行分析讨论,把得到的主影响因素作为算法输入量对预测日用水量做预测;而后针对预测日的时用水特征,在动态模糊聚类中引入聚类中心距离评价函数及非线性约束条件,寻求预测日的各时段水量分配模式,并依据该模式做时用水量的最终预测及合理调度。用萧山南阳镇历史用水量为例,做预测仿真验证,结果表明,该方法能够很好跟踪预测日的时用水量变化,稳定跟踪能力及跟踪精度上远优于传统时间序列预测法,易满足供水系统的调度精度需求。

Abstract:

It was difficult to find the principal influencing factors on urban water demand because of their diversity, geographical time variability and difficulty in matching the time-scale with hourly water demand, so the hourly water demand forecasting method based on principal influencing factors was proposed. First, the improved grey relation analysis method was used to analyze the influencing factors of water demand, and the principal influencing factors obtained were used as the algorithm inputs to predict the daily water demand. Then, according to the characteristics of the hourly water demand in prediction days, the dynamic fuzzy clustering method with distance evaluation function of cluster centers and nonlinear constraints was put forward to recognize different hourly water demand modes, in order to make the final prediction and reasonable scheduling of hourly water demand. Case Simulation was presented with historical water demand of Xiaoshan Nangyang town. The results indicate that the method has good behaviors of hourly water demand forecasting, far better than the traditional time series forecasting method in tracking stability and precision, and is easy to meet the accuracy needs of water supply system scheduling.

出版日期: 2012-12-11
:  TP 273.1  
基金资助:

 国家“973”重点基础研究发展规划资助项目(2009CB320602) .

通讯作者: 汪雄海,男,教授,博导.     E-mail: wxh_10@zju.edu.cn
作者简介: 麦志彦(1986-),男,硕士生,主要从事复杂控制系统先进智能控制与优化节能技术研究.E-mail: maizhiyan2009@126.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

麦志彦,何中杰,汪雄海. 基于主影响因素的城市时用水量预测[J]. J4, 2012, 46(11): 1968-1974.

MAI Zhi-yan, HE Zhong-Jie, WANG Xiong-hai. Urban hourly water demand prediction based on principal factors analysis. J4, 2012, 46(11): 1968-1974.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.11.005        http://www.zjujournals.com/eng/CN/Y2012/V46/I11/1968

[1] BABEL M, DAS GUPTA A, PRADHAN P .A multivariate econometric approach for domestic water demand modeling: An application to Kathmandu, Nepal [J]. Water Resources Management , 2006, 21(3):573-589.
[2] ALTUNKAYNAK A, ZGER M, CAKMAKCI M. Water consumption prediction of Istanbul city by using fuzzy logic approach [J]. Water Resource Management, 2005, 19: 614-654.
[3] BOUGADIS J, ADAMOWSKI K, DIDUCH R. Shortterm municipal water demand forecasting [J]. Hydrological Processes, 2005, 19: 137-148.
[4] 信昆仑,陶涛.考虑气象因子的城市日用水量预测模型[J].武汉大学学报:工学版, 2009, 42(4): 461-465.
XIN Kunlun, TAO Tao. Meteorological factor involved urban water demand forecast model [J]. Engineering Journal of Wuhan University, 2009, 42(4): 461-465.
[5] GATO S, JAYASRIYA N, ROBERTS P. Temperature and rainfall thresholds for base urban water demand modeling [J]. Journal of Hydrology, 2007, 337, (3/4):364-376.
[6] YURDUSEV M, FIRAT M. Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey [J]. Journal of Hydrology, 2009, 365 (3/4): 225-234.

[7] ZHOU S, MCAMHON T. Forecasting operational demand for an urban water supply zone [J]. Journal of Hydrology, 2002, 259:189-202.
[8] 江田汉,束炯,基于LSSVM的混沌时间序列的多步预测[J].控制与决策, 2006, 21(1): 77-80.
TIAN Hanjiang, SHU Jiong. Multistep prediction of chaotic time series using the least square support vector machines [J]. Control and Decision, 2006, 21(1):77-80.
[9] HERRERA M, TORGO L, LZQUIERDO J, et al. Predictive models for forecasting hourly urban water demand [J]. Journal of Hydrology, 2010, 387:141-150.
[10] FIRAT M, TURAN M, YURDUSEV M. Comparative analysis of neural network techniques for predicting water consumption time series [J]. Journal of Hydrology, 2010, 384(2010):46-51.

[1] 刘丞, 汪昆, 汪雄海. 基于粒子群算法的潮流发电机布局[J]. J4, 2013, 47(12): 2087-2093.
[2] 杨成成,汪雄海. 基于流量的城市排水系统协调优化调度方法[J]. J4, 2011, 45(9): 1598-1602.
[3] 刘兴高, 陈珑. 约束优先边值固定最优控制嵌套优化方法[J]. J4, 2010, 44(7): 1247-1250.