Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1880-1886    DOI: 10.3785/j.issn.1008-973X.2012.10.022
土木工程     
基于传递熵的梁结构损伤动力识别
谢中凯, 刘国华, 吴志根
浙江大学 水工结构与水环境研究所,浙江 杭州 310058
Dynamic damage identification for beam structures
based on transfer entropy
XIE Zhong-kai, LIU Guo-hua, WU Zhi-gen
Institute of Hydraulic Structures and Water Environment, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

引入传递熵理论,利用梁上多点的加速度信号进行动力损伤识别研究.利用Abaqus软件分析只在主平面内弯曲振动的混凝土简支梁,通过折减指定单元弹性模量的方法模拟梁的弹性损伤.数值分析采用高斯白噪声激励,为了保证传递熵结果的可靠性,在每个损伤工况下均进行多次数据采样,利用各时间尺度上传递熵的均值进行损伤识别.基于梁上多点的加速度信号,利用核密度估计方法验证了直接使用线性化传递熵理论的合理性.通过定义损伤指标,表明传递熵在对混凝土结构进行损伤定量及定位方面均有良好的表现.

Abstract:

Transfer entropy was introduced to detect the damage in a beam structure by acceleration signals. A simply supported concrete beam was analyzed by using Abaqus, and the bending vibration of the beam only exits in its principal plane was assumed during the analysis. Elastic damage in the concrete beam was simulated via reducing the elastic modulus in a specified element. Gaussian excitation was applied in numerical analysis. Signal data were sampled several times at each damage level to ensure the result of transfer entropy, and the mean value of transfer entropy at all time scales was used to identify the damage. The linearized transfer entropy method was validated by kernel density estimation method based on the acceleration signals of the beam. Transfer entropy was proved to be an effective tool to accurately identify the damage degree and locate the damage in concrete structures by defining two different damage indexes.

出版日期: 2012-10-01
:  TU 317  
基金资助:

国家自然科学基金资助项目(50579081).

通讯作者: 刘国华,男,教授.     E-mail: zjuliugh@zju.edu.cn
作者简介: 谢中凯(1985—),男,博士生,从事混凝土结构损伤识别的研究.E-mail: xzkzju@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

谢中凯, 刘国华, 吴志根. 基于传递熵的梁结构损伤动力识别[J]. J4, 2012, 46(10): 1880-1886.

XIE Zhong-kai, LIU Guo-hua, WU Zhi-gen. Dynamic damage identification for beam structures
based on transfer entropy. J4, 2012, 46(10): 1880-1886.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.10.022        http://www.zjujournals.com/eng/CN/Y2012/V46/I10/1880

[1] 袁颖,周爱红.结构损伤识别理论及其应用[M].北京:中国大地出版社,2008:1.
[2] 向天宇,赵人达,刘海波.基于静力测试数据的预应力混凝土连续梁结构损伤识别[J].土木工程学报,2003,36(11): 79-82.
XIANG Tianyu, ZHAO Renda, LIU Haibo. Damage detection of prestressed concrete continuous beam from static response [J]. China Civil Engineering Journal, 2003, 36(11): 79-82.
[3] 刘国华,吴志根. 引入信息熵理论的砼结构损伤动力识别新思路[J].振动与冲击, 2011, 30(6): 162-171.
LIU Guohua, WU Zhigen. New thought of dynamic identification technology for damage detection of RC structures by introducing information entropy theory [J]. Journal of Vibration and Shock, 2011, 30(6): 162-171.
[4] SCHREIBER T. Measuring information transfer [J]. Physical Review Letters, 2000, 85(2): 461-464.
[5] KAISER A, SCHREIBER T. Information transfer in continuous processes [J]. Physica D, 2002, 166(1/2): 43-62.
[6] MARSCHINSKI R, KANTZ H. Analysing the information ow between nancial time series: an improved estimator for transfer entropy [J]. European Physical Journal B, 2002, 30(2): 275-281.
[7] NICHOLS J M, SEAVER M, TRICKEY S T. A method for detecting damageinduced nonlinearities in structures using information theory [J]. Journal of Sound and Vibration, 2006, 297(1/2): 1-16.
[8] OVERBEY L A, TODD M D. Dynamic system change detection using a modification of the transfer entropy [J]. Journal of Sound and Vibration, 2009, 322(1/2): 438-453.
[9] OVERBEY L A, TODD M D. Effects of noise on transfer entropy estimation for damage detection [J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2178-2191.
[10] 吴乃龙,袁素云.最大熵方法[M].湖南:湖南科学技术出版社,1991: 4-5.
[11] 周炯磐.信息理论基础[M].北京:人民邮电出版社,1985: 178-180.
[12] NICHOLS J M. Examining structural dynamics using information flow [J]. Probabilistic Engineering Mechanics, 2006, 21(4): 420-433.
[13] NICHOLS J M, SEAVER M, TRICKEY S T, et al. Detecting nonlinearity in structural systems using the transfer entropy [J]. Physical Review E, 2005, 72(4): 1-11.
[14] SILVERMAN B W. Density estimation for statistics and data analysis [M]. London: Chapman, 1986: 13-19.
[15] PRICHARD D, THEILER J. Generalized redundancies for time series analysis [J]. Physica D, 1995, 84(3/4): 476-493.
[16] LIEBERT W, SCHUSTER H G. Proper choice of the time delay for the analysis of chaotic time series [J]. Physics Letters A, 1989, 142(2/3): 107-111.
[17] 盛骤,谢式千,潘承毅. 概率论与数理统计[M].北京: 高等教育出版社,2005: 376-377.
[18] 余寿文,冯西桥. 损伤力学[M].北京:清华大学出版社,1997: 27-28.
[19] 余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993: 41-42.
[20] 李灏.损伤力学基础[M].济南:山东科学技术出版社,1992: 56-57.
[21] 张明,李仲奎,孙霞.准脆性材料弹性损伤分析中的概率体元建模[J].岩石力学与工程学报,2005,24(23): 4282-4288.
ZHANG Ming, LI Zhongkui, SUN Xia. Probabilistic volume element modeling in elastic damage analysis of quasibrittle materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4282-4288.
[22] 王云,郝际平. 弹性损伤理论的几何拓扑描述[J].工程力学,2008,25(5): 60-66.
WANG Yun, HAO Jiping. Geometrical topology of elastic damage theory [J]. Engineering Mechanics, 2008, 25(5): 60-66.
[23] 唐雪松,蒋持平,郑健龙.弹性损伤的一般理论[J]. 北京航空航天大学学报,2001,27(1): 69-72.
TANG Xuesong, JIANG Chiping, ZHENG Jianlong. A general theory for elastic damage [J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(1): 69-72.

No related articles found!