[1] 袁颖,周爱红.结构损伤识别理论及其应用[M].北京:中国大地出版社,2008:1.
[2] 向天宇,赵人达,刘海波.基于静力测试数据的预应力混凝土连续梁结构损伤识别[J].土木工程学报,2003,36(11): 79-82.
XIANG Tianyu, ZHAO Renda, LIU Haibo. Damage detection of prestressed concrete continuous beam from static response [J]. China Civil Engineering Journal, 2003, 36(11): 79-82.
[3] 刘国华,吴志根. 引入信息熵理论的砼结构损伤动力识别新思路[J].振动与冲击, 2011, 30(6): 162-171.
LIU Guohua, WU Zhigen. New thought of dynamic identification technology for damage detection of RC structures by introducing information entropy theory [J]. Journal of Vibration and Shock, 2011, 30(6): 162-171.
[4] SCHREIBER T. Measuring information transfer [J]. Physical Review Letters, 2000, 85(2): 461-464.
[5] KAISER A, SCHREIBER T. Information transfer in continuous processes [J]. Physica D, 2002, 166(1/2): 43-62.
[6] MARSCHINSKI R, KANTZ H. Analysing the information ow between nancial time series: an improved estimator for transfer entropy [J]. European Physical Journal B, 2002, 30(2): 275-281.
[7] NICHOLS J M, SEAVER M, TRICKEY S T. A method for detecting damageinduced nonlinearities in structures using information theory [J]. Journal of Sound and Vibration, 2006, 297(1/2): 1-16.
[8] OVERBEY L A, TODD M D. Dynamic system change detection using a modification of the transfer entropy [J]. Journal of Sound and Vibration, 2009, 322(1/2): 438-453.
[9] OVERBEY L A, TODD M D. Effects of noise on transfer entropy estimation for damage detection [J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2178-2191.
[10] 吴乃龙,袁素云.最大熵方法[M].湖南:湖南科学技术出版社,1991: 4-5.
[11] 周炯磐.信息理论基础[M].北京:人民邮电出版社,1985: 178-180.
[12] NICHOLS J M. Examining structural dynamics using information flow [J]. Probabilistic Engineering Mechanics, 2006, 21(4): 420-433.
[13] NICHOLS J M, SEAVER M, TRICKEY S T, et al. Detecting nonlinearity in structural systems using the transfer entropy [J]. Physical Review E, 2005, 72(4): 1-11.
[14] SILVERMAN B W. Density estimation for statistics and data analysis [M]. London: Chapman, 1986: 13-19.
[15] PRICHARD D, THEILER J. Generalized redundancies for time series analysis [J]. Physica D, 1995, 84(3/4): 476-493.
[16] LIEBERT W, SCHUSTER H G. Proper choice of the time delay for the analysis of chaotic time series [J]. Physics Letters A, 1989, 142(2/3): 107-111.
[17] 盛骤,谢式千,潘承毅. 概率论与数理统计[M].北京: 高等教育出版社,2005: 376-377.
[18] 余寿文,冯西桥. 损伤力学[M].北京:清华大学出版社,1997: 27-28.
[19] 余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993: 41-42.
[20] 李灏.损伤力学基础[M].济南:山东科学技术出版社,1992: 56-57.
[21] 张明,李仲奎,孙霞.准脆性材料弹性损伤分析中的概率体元建模[J].岩石力学与工程学报,2005,24(23): 4282-4288.
ZHANG Ming, LI Zhongkui, SUN Xia. Probabilistic volume element modeling in elastic damage analysis of quasibrittle materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4282-4288.
[22] 王云,郝际平. 弹性损伤理论的几何拓扑描述[J].工程力学,2008,25(5): 60-66.
WANG Yun, HAO Jiping. Geometrical topology of elastic damage theory [J]. Engineering Mechanics, 2008, 25(5): 60-66.
[23] 唐雪松,蒋持平,郑健龙.弹性损伤的一般理论[J]. 北京航空航天大学学报,2001,27(1): 69-72.
TANG Xuesong, JIANG Chiping, ZHENG Jianlong. A general theory for elastic damage [J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(1): 69-72. |