Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1857-1865    DOI: 10.3785/j.issn.1008-973X.2012.10.019
崔建涛1, 厉小润1, 赵辽英2
1.浙江大学 电气工程学院,浙江 杭州 310027;2.杭州电子科技大学 计算机应用技术研究所,浙江 杭州 310018
Endmember extraction method for subpixel materials
in hyperspectral imagery
CUI Jian-tao1, LI Xiao-run1, ZHAO Liao-ying2
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; 2. Institute of Computer
Application Technology, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF  HTML



An endmember extraction algorithm based on the theory of convex geometry and partial nonnegative matrix factorization was proposed in order to solve the problem of extracting the endmembers of subpixel materials in hyperspectral imagery. The dewhitening endmember extraction algorithm based on orthogonal bases of subspace and the similarity comparison were applied to obtain the endmembers containing pure pixels, and the reconstruction error (RE) for every pixel was calculated only with these endmembers. A partial nonnegative matrix factorization algorithm was implemented with the pixels whose REs are greater than the preset threshold, and the endmembers of the subpixel materials were achieved. Experimental results demonstrate that the algorithm can remedy the weakness of the traditional methods and availably retrieve endmembers of the subpixel materials.

出版日期: 2012-10-01
:  TP 751  


通讯作者: 厉小润,男,副教授.     E-mail:
作者简介: 崔建涛(1988—),男,博士生,从事高光谱混合像元分解研究
E-mail Alert


崔建涛, 厉小润, 赵辽英. 高光谱图像亚像元级地物端元提取方法[J]. J4, 2012, 46(10): 1857-1865.

CUI Jian-tao, LI Xiao-run, ZHAO Liao-ying. Endmember extraction method for subpixel materials
in hyperspectral imagery. J4, 2012, 46(10): 1857-1865.


[1] 童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006: 262.
[2] BOARDMAN J W, KRUSE F A, GREEN R O. Mapping target signatures via partial unmixing of AVIRIS data: in summaries [C]∥ 5th JPL Airborne Earth Science Workshop. Pasadena: JPL, 1995: 23-26.
[3] WINTER M E. NFINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data [C]∥ Proceedings of the SPIE conference on Imaging Spectrometry V. Washington: SPIE, 1999: 266-275.
[4] IFARRAGUEERRI A, CHANG C I. Multispectral and hyperspectral image analysis with convex cones [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 756-770.
[5] NASCIMENTO J M P, DIAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (4): 898.
[6] BERMAN M, KIIVERI H, LAGERSTORM R, et al. Ice: a statistical approach to identifying endmembers in hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2085-2095.
[7] MIAO Lidan, QI Hairong. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 765-777.
[8] PAUCA V P, PIPER J, PLEMMONS R J. Nonnegative matrix factorization for spectral data analysis [J]. Linear Algebra and Applications, 2006, 416 (1): 29-47.
[9] LEE D D, SEUNG H S. Algorithm for nonnegative matrix factorization [J]. Advances in Neural Information Processing Systems, 2001, 3(13): 556-562.
[10] ROGGE D M, RIVARD B, ZHANG Jinkai, et al. Iterative spectral unmixing for optimizing perpixel endmember sets [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3725-3736.
[11] 童庆禧,张兵,郑兰芬.高光谱遥感:原理,技术与应用[M].北京:高等教育出版社, 2006: 55.
[12] TAO Xuetao, WANG Bin, ZHANG Liming, et al. A new endmember extraction algorithm based on orthogonal bases of subspace formed by endmembers [C]∥ IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE, 2007: 2006-2009.
[13] JOLLIFFE L T. Principal component analysis [M]. New York: Springer, 1986: 45.
[14] GREEN A, BERMAN M, SWITZER P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 26(1): 65-74.
[15] SCHARF L L. Statistical signal processing, detection estimation and time series analysis [M]. Reading, MA: Wesley, 1991.
[16] KESHAVA N, MUSTARD J F. Spectral unmixing [J]. IEEE Signal Processing Magazine, 2002, 19(3): 44-57.
[17] SHIMABUKURO Y E, SMITH J A. The leastsquare mixing models to generate fraction images derived from remote sensing multispectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(1): 16-20.
[18] 贾森,钱沄涛,纪震,等.基于光谱和空间特性的高光谱解混方法[J].深圳大学学报:理工版,2009,26(3): 262267.
JIA Sen, QIAN Yuntao, JI Zhen, et al. Spectral and spatial characterbased hyperspectral unmixing [J]. Journal of Shenzhen University: Science and Engineering, 2009, 26(3): 262-267.
[19] CLARK R N, SWAYZE G A, GALLAGHER A, et al. The U. S. geological survey digital spectral library: version 1: 02 to 3.0 microns [R]. Virginia: United States Geological Survery, 1993: 93-592.
[20] 贾森.非监督的高光谱图像解混技术研究[D].杭州:浙江大学,2007.
JIA Sen. Unsupervised hyperspectral unmixing theory and techniques [D]. Hangzhou: Zhejiang University, 2007.
[21] SWAYZE G A, CLARK R L, SUTLEY S, et al. Groundtruthing AVIRIS mineral mapping at cuprite, Nevada [C]∥ Summaries of the 3rd Annual JPL Airborne Geoscience Workshop. Pasadena: [s.n.], 1992: 47-49.
[22] CHANG C I, DU Q. Estimation of number of the cuprite mining district, southwestern Nevada: an integrated geological and geophysical approach [D]. Boulder: University of Colorado, 1997.

[1] 崔建涛,王晶,厉小润,赵辽英. 基于空间像素纯度指数的端元提取算法[J]. J4, 2013, 47(9): 1517-1523.
[2] 厉小润, 伍小明, 赵辽英. 非监督的高光谱混合像元非线性分解方法[J]. J4, 2011, 45(4): 607-613.
[3] 张登荣, 俞乐, 张汉奎, 等. 光学遥感影像快速镶嵌方法[J]. J4, 2009, 43(11): 1988-1993.