Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1831-1838    DOI: 10.3785/j.issn.1008-973X.2012.10.015
电气工程     
基于系统SOC理论的直流运行方式及控制参数分析
屠竞哲1, 于洋2, 史济全3, 辛焕海1
1. 浙江大学 电气工程学院, 浙江 杭州 310027; 2. 国网北京经济技术研究院, 北京 100052;
3. 国家电网华东电力调控分中心, 上海 200002
DC operation mode and control parameters based on
system self-organized criticality theory
TU Jing-zhe1, YU Yang2, SHI Ji-quan3, XIN Huan-hai1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; 2. State Power Economic
Research Institute, Beijing 100052, China; 3. State Grid East China Power Dispatch and Control Center,
 Shanghai 200002, China
 全文: PDF  HTML
摘要:

为了研究直流输电对交直流系统自组织临界性(SOC)的影响,提出包含系统完整动态特性的连锁故障动态仿真模型,计及了紧急控制保护装置及直流系统的概率动作特性.应用该模型对2010年华东电网实际系统进行连锁故障蒙特卡洛仿真,在不同的直流运行方式及控制参数下,计算系统的停电功率-停电概率幂律曲线,分析直流运行方式及控制参数对系统自组织临界性的影响.结果表明,在某些情况下选取合适的直流运行方式及控制参数可以有效防范连锁故障及大停电的发生.

Abstract:

A dynamic cascading failure model including system complete dynamic characteristics was proposed in order to analyze the impact of DC transmission on the self-organized criticality (SOC) of AC/DC system. The model considered the probability characteristics of emergency control and protection device and DC system. A cascading failure Monte-Carlo simulation of the 2010 East China power grid actual system was performed by using the model. The system outage power-outage probability power law curve was calculated, and the impact of DC operation mode and control parameters on the system self-organized criticality was analyzed under different DC operation modes and control parameters. Results show that the occurrence of cascading failure and blackout can be effectively prevented by selecting the suitable DC operation mode and control parameters in certain conditions.

出版日期: 2012-10-01
:  TM 712  
基金资助:

国家“973”重点基础研究发展规划资助项目(2004CB217902);国家自然科学基金重大资助项目(50595411).

通讯作者: 辛焕海, 男, 副教授.     E-mail: xinhh@zju.edu.cn
作者简介: 屠竞哲(1984—), 男, 博士生, 从事电力系统交直流稳定性分析与控制的研究. E-mail: tujingzhe@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

屠竞哲, 于洋, 史济全, 辛焕海. 基于系统SOC理论的直流运行方式及控制参数分析[J]. J4, 2012, 46(10): 1831-1838.

TU Jing-zhe, YU Yang, SHI Ji-quan, XIN Huan-hai. DC operation mode and control parameters based on
system self-organized criticality theory. J4, 2012, 46(10): 1831-1838.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.10.015        http://www.zjujournals.com/eng/CN/Y2012/V46/I10/1831

[1] 印永华,郭剑波,赵建军,等.美加“8·14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10): 811, 16.
YIN Yonghua, GUO Jianbo, ZHAO Jianjun, et al. Preliminary analysis of large scale blackout in interconnected north America power grid on August 14 and lessons to be drawn [J]. Power System Technology, 2003, 27(10): 8-11, 16.
[2] 甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(4): 1-5.
GAN Deqiang, HU Jiangyi, HAN Zhenxiang. Thinking over several blackouts in 2003 [J]. Automation of Electric Power Systems, 2004, 28(4): 1-5.
[3] 李再华,白晓民,丁剑,等.西欧大停电事故分析[J].电力系统自动化,2007,31(1): 1-3, 32.
LI Zaihua, BAI Xiaomin, DING Jian, et al. Analysis of the Western Europe blackout [J]. Automation of Electric Power Systems, 2007, 31(1): 1-3, 32.
[4] 林伟芳,孙华东,汤涌,等.巴西“11·10”大停电事故分析及启示[J].电力系统自动化,2010,34(7): 1-5.
LIN Weifang, SUN Huadong, TANG Yong, et al. Analysis and lessons of the blackout in Brazil power grid on November 10, 2009 [J]. Automation of Electric Power Systems, 2010, 34(7): 1-5.
[5] BAK P. How nature works: the science of selforganized criticality [M]. New York: Copernicus Press, 1996: 1-32.
[6] BAK P. Selforganized criticality [M]. Cambridge: Cambridge University Press, 1998: 1-24.
[7] CARRERAS B A, NEWMAN D E, DOBSON I, et al. Initial evidence for selforganized criticality in electric power system blackouts [C]∥Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. Hawaii: [s.n.], 2000: 1-6.
[8] CARRERAS B A, NEWMAN D E, DOBSON I, et al. Evidence for selforganized criticality in electric power system blackouts [C]∥Proceedings of the 34th Annual Hawaii International Conference on System Sciences. Hawaii: [s.n.], 2001: 705-709.
[9] 于群,郭剑波.中国电网停电事故统计与自组织临界性特征[J].电力系统自动化,2006,30(2): 16-21.
YU Qun, GUO Jianbo. Statistics and selforganized criticality characters of blackouts in China electric power systems [J]. Automation of Electric Power Systems, 2006, 30(2): 16-21.
[10] 于群,郭剑波.我国电力系统停电事故自组织临界性的研究[J].电网技术,2006,30(6): 1-5.
YU Qun, GUO Jianbo. Study on selforganized criticality of power system blackouts in China [J]. Power System Technology, 2006, 30(6): 1-5.
[11] DOBSON I, CARRERAS B A, LYNCH V E, et al. An initial model for complex dynamics in electric power system blackouts [C]∥Proceedings of the 34th Annual Hawaii International Conference on System Sciences. Hawaii: [s.n.], 2001: 710-718.
[12] CARRERAS B A, LYNCH V E, DOBSON I, et al. Modeling blackout dynamics in power transmission networks with simple structure [C]∥Proceedings of the 34th Annual Hawaii International Conference on System Sciences. Hawaii: [s.n.], 2001: 719-727.
[13] 曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电网技术,2005,29(15): 1-5.
CAO Yijia, JIANG Quanyuan, DING Lijie. Selforganized criticality phenomenon for power system blackouts [J]. Power System Technology, 2005, 29(15): 1-5.
[14] 邓慧琼,艾欣,赵亮,等.大停电自组织临界特征的若干问题探讨[J].电网技术,2007,31(8): 42-46.
DENG Huiqiong, AI Xin, ZHAO Liang, et al. Discussion on several problems of selforganized criticality of blackout [J]. Power System Technology, 2007, 31(8): 42-46.
[15] 易俊,周孝信,肖逾男.电力系统自组织临界特性分析与仿真模型[J].电网技术,2008, 32(3): 7-12.
YI Jun, ZHOU Xiaoxin, XIAO Yunan. Analysis on power system selforganized criticality and its simulation model [J]. Power System Technology, 2008, 32(3): 7-12.
[16] 于洋,黄民翔,辛焕海,等.基于动态仿真的连锁故障分析[J].电力系统自动化,2008,32(20): 15-21.
YU Yang, HUANG Minxiang, XIN Huanhai, et al. Cascading outage analysis based on dynamic simulation [J]. Automation of Electric Power Systems, 2008, 32(20): 15-21.
[17] 梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析[J].电力系统自动化,2006, 30(13): 1-5, 32.
MEI Shengwei, WENG Xiaofeng, XUE Ancheng, et al. Blackout model based on OPF and its selforganized criticality [J]. Automation of Electric Power Systems, 2006, 30(13): 1-5, 32.
[18] 何飞,梅生伟,薛安成,等.基于直流潮流的电力系统停电分布及自组织临界性分析[J].电网技术,2006, 30(14): 7-12.
HE Fei, MEI Shengwei, XUE Ancheng, et al. Blackouts distribution and selforganized criticality of power system based on DC power flow [J]. Power System Technology, 2006, 30(14): 7-12.
[19] 夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析[J].电力系统自动化,2007,31(12): 12-18, 91.
XIA Deming, MEI Shengwei, HOU Yunhe. A power system blackout model based on OTS and its selforganized criticality [J]. Automation of Electric Power Systems, 2007, 31(12): 12-18, 91.
[20] 吴红斌,丁明,李生虎.直流输电模型和调节方式对暂态稳定影响的统计研究[J].中国电机工程学报,2003,23(10): 32-37.
WU Hongbin, DING Ming, LI Shenghu. Statistical research on the effects of DC models and controls to transient stability of power systems [J]. Proceedings of the CSEE, 2003, 23(10): 32-37.
[21] 张建设,张尧,张志朝,等.直流系统控制方式对大扰动后交直流混合系统电压和功率恢复的影响[J].电网技术,2005,29(5): 20-24.
ZHANG Jianshe, ZHANG Yao, ZHANG Zhichao, et al. Influence of DC system control modes on voltage and power recovery after large disturbance in hybrid AC/DC systems [J]. Power System Technology, 2005, 29(5): 20-24.
[22] 任震,冉立,李正然.交直流并联系统可靠性与概率动态安全分析[J].华南理工大学学报,1997,25(6): 1-11.
REN Zhen, RAN Li, LI Zhengran. Reliability and probability dynamic security analysis in planning of AC/DC hybrid systems [J]. Journal of South China University of Technology, 1997, 25(6): 1-11.
[23] 丁明,黄凯,李生虎.交直流混合系统的概率稳定性分析[J].中国电机工程学报,2002,22(8): 11-16.
DING Ming, HUANG Kai, LI Shenghu. Probabilistic stability assessment for hybrid AC/DC power systems [J]. Proceedings of the CSEE, 2002, 22(8): 11-16.
[24] ARABI S, KUNDUR P, SAWADA J H. Appropriate HVDC transmission simulation models for various power system stability studies [J]. IEEE Transactions on Power Systems, 1998, 113(4): 1292-1297.
[25] JOHNSON B K. HVDC models used in stability studies [J]. IEEE Transactions on Power Delivery, 1989, 4(2): 1153-1163.
[26] Siemens Energy Incorporation. PSSE 32 program application guide volume II [M]. Munich: Siemens Energy Incorporation, 2010: 291-316.

[1] 刘兆燕,江全元,徐立中,等. 基于特征根聚类的电力系统时滞稳定域研究[J]. J4, 2009, 43(8): 1473-1479.