Please wait a minute...
J4  2012, Vol. 46 Issue (9): 1685-1691    DOI: 10.3785/j.issn.1008-973X.2012.09.021
化学工程     
基于希尔伯特-黄变换测量搅拌釜临界分散转速
黄正梁,胡雨晨,王靖岱,阳永荣
浙江大学 化学工程联合国家重点实验室, 浙江 杭州 310027
Measurement of critical dispersion speed in stirred tank
based on Hilbert-Huang transform
HUANG Zheng-liang, HU Yu-chen, WANG Jing-dai, YANG Yong-rong
State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

基于希尔伯特-黄变换(HHT)分析搅拌釜壁产生的声发射(AE)信号,获得了代表气液体系运动的特征频段(10~80 kHz),将其对AE信号进行重构.以重构信号能量为特征参数,根据其随搅拌转速的规律性变化,提出搅拌釜临界分散转速的测量判据,即重构信号能量由平稳突然增大时所对应的搅拌转速为临界分散转速.与目测法相比,该方法平均相对偏差小于2.86%,具有较高的精度.研究发现,外循环破坏了搅拌釜内的径向流动,不利于气液分散,导致临界分散转速变大.根据不同外循环条件下的实验结果,建立外循环搅拌釜临界分散转速的预测关联式,平均相对偏差小于0.65%.该研究结果表明,声发射结合HHT的方法可以准确实现临界分散转速的测量.

Abstract:

HilbertHuang transform (HHT) was used to analyze the acoustic emission (AE) signals received from the wall of a stirred tank. The characteristic frequency scale (10-80 kHz), which represented the gas and liquid movement, was obtained to reconstruct the AE signals. The energy of the reconstructed AE signals was found changing regularly with increasing impeller speed in the stirred tank. Then, a criterion to determine the critical dispersion speed was proposed. When the energy of the reconstructed signals begins to increase remarkably after remaining constant, the corresponding impeller speed is the critical dispersion speed. Compared with visual observation, the average relative deviation of this method was less than 2.86%. Furthermore, it was found that external loop could fairly increase the critical dispersion speed by reducing the radial flow in the tank, and impairing the gas dispersion in the tank. According to the experimental results of different external circulation conditions, a predictive model for calculating the critical dispersion speed in a stirred tank with external loop was established. Its average relative deviation was less than 0.65%. The results show that the multi-scale analysis of acoustic signals based on HHT can accurately measure the critical dispersion speed.

出版日期: 2012-09-01
:  TQ 021  
基金资助:

国家自然科学基金资助项目(21076207);国家重点基础研究发展计划资助项目(2012CB720500).

通讯作者: 王靖岱, 男, 教授.     E-mail: wangjd@zju.edu.cn
作者简介: 黄正梁(1982-), 男, 博士生, 从事多相流反应工程的研究. E-mail: huangzhengl@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄正梁,胡雨晨,王靖岱,阳永荣. 基于希尔伯特-黄变换测量搅拌釜临界分散转速[J]. J4, 2012, 46(9): 1685-1691.

HUANG Zheng-liang, HU Yu-chen, WANG Jing-dai, YANG Yong-rong. Measurement of critical dispersion speed in stirred tank
based on Hilbert-Huang transform. J4, 2012, 46(9): 1685-1691.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.09.021        http://www.zjujournals.com/eng/CN/Y2012/V46/I9/1685

[1] 王凯, 冯连芳. 混合设备设计[M]. 北京: 机械工业出版社, 2000: 1.
[2] 陈雷, 高正明. 多层桨气液搅拌反应器内局部特性的数值模拟[J]. 北京化工大学学报:自然科学版, 2010, 37(3): 14-19.
CHEN Lei, GAO Zhengming. Numerical simulation of local characteristics in an aerated stirred tank with multiple impellers [J]. Journal of Beijing University of Chemical Technology :Natural Science Edition, 2010, 37(3): 14-19.
[3] 李良超, 王嘉骏, 顾雪萍, 等. 气液搅拌槽内气泡尺寸与局部气含率的CFD模拟[J]. 浙江大学学报:工学版, 2010, 44(12): 2396-2415.
LI Liangchao, WANG Jiajun, GU Xueping, et al. Computational fluid dynamics simulation of bubble size and local gas holdup in stirred vessel [J]. Journal of Zhejiang University :Engineering Science, 2010, 44(12): 2396-2415.
[4] 殷大斌. 淤浆法高密度聚乙烯装置浆液外循环改造研究[D]. 南京: 南京工业大学, 2005.
YIN Dabin. Study on improvement of slurry outside circulation of slurry process for HDPE [D]. Nanjing: Nanjing University of Technology, 2005.
[5] 王凯, 虞军. 化工设备设计全书——搅拌设备[M]. 北京: 化学工业出版社, 2003: 19.
[6] 徐世艾. 气液固三相搅拌设备研究[D]. 杭州: 浙江大学, 1999.
XU Shiai. Study on gasliquidsolid three phase agitation instrument [D]. Hangzhou: Zhejiang University, 1999.
[7] BOYD J,VARLEY J. The uses of passive measurement of acoustic emissions from chemical engineering processes [J]. Chemical Engineering Science, 2001, 56(7): 1749-1767.
[8] 曹翌佳, 刘伟, 姜晓静, 等. 从噪声到信息——声发射技术在流程工业中的应用[J]. 化工进展, 2007, 26(12): 1702-1707.
CAO Yijia, LIU Wei, JIANG Xiaojing, et al. From noise to informationsome applications of acoustic emission techniques in process industries [J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1702-1707.
[9] CAO Y J, WANG J D, HE Y J, et al. Agglomeration detection based on attractor comparison in horizontal stirred bed reactors by acoustic Emission sensors [J]. AIChE Journal, 2009, 55(12): 3099-3108.
[10] WANG J D, REN C J, YANG Y R. Characterization of flow regime transition and particle motion using acoustic emission measurement in a gassolid fluidized bed [J]. AIChE Journal, 2010 56(5): 1173-1183.
[11] 王云兴, 汪兵, 任聪静, 等. 气液搅拌釜泛点转速的声波测量[J]. 化工学报, 2009, 60(5): 1148-1155.
WANG Yunxing, WANG Bing, REN Congjing, et al. Identification of floodingloading transition in stirred vessel based on acoustic method [J]. Journal of Chemical Industry and Engineering, 2009, 60(5): 1148-1155.
[12] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proceedings of Royal Society London A, 1998, 454: 903-995.
[13] DATIG M, SCHLURMANN T. Performance and limitations of the HilbertHuang transformation (HHT) with an application to irregular water waves [J]. Ocean Engineering, 2004, 31: 1783-1834.
[14] PAI P F, PALAZOTTO A N. HHTbased nonlinear signal processing method for parametric and nonparametric identification of dynamical systems [J]. International Journal of Mechanical Sciences, 2008, 50(12): 1619-1635.
[15] 沈毅, 沈志远. 一种非线性非平稳自适应信号处理方法——希尔伯特黄变换综述: 发展与应用[J]. 自动化技术与应用, 2010, 29(5): 1-5.
SHEN Yi, SHEN Zhiyuan. A Review of the nonlinear nonstationary adaptive signal processing methodhilberthuang transform: its development and applications [J]. Techniques of Automation and Applications, 2010, 29(5): 1-5.
[16] PENG Z K, PETER W, CHU F L. An improved HilbertHuang transform and its application in vibration signal analysis [J]. Journal of Sound and Vibration, 2005, 286(1/2): 187-205.
[17] 王逸林. 希尔伯特黄变换在矢量信号处理中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.
WANG Yilin. Research on the application of hilberthuang transformation to vector signal processing [D]. Harbin: Harbin Engineering University, 2006.
[18] 王晓萍. 基于现代非线性信息处理技术的气固流化床流型识别方法与实验研究[D]. 杭州: 浙江大学, 2004.
WANG Xiaoping. Flow regimes identification method and its experimental study basedon modern nonlinear information theory in gassolid fluidized beds [D]. Hangzhou: Zhejiang University, 2004.
[19] 蒋鹏. 基于HHT的声发射信号处理研究[D]. 大庆: 大庆石油学院, 2009.
JIANG Peng. Acoustic emission signal processing research based on HHT [D]. Daqing: Daqing Petroleum Institute, 2009.
[20] 罗抟翼. 信号、系统与自动控制原理[M]. 北京: 机械工业出版社, 2000: 120-121.
[21] 陈一贤. HHT方法分析[D]. 杭州: 浙江大学, 2007.
CHEN Yixian. HHT method analysis [D]. Hangzhou: Zhejiang University, 2007.

[1] 韩笑,周业丰,黄正梁,顾玉彬,王靖岱,俞欢军,阳永荣. 基于声信号的气固流化床塌落过程研究[J]. J4, 2014, 48(3): 527-534.