Please wait a minute...
J4  2012, Vol. 46 Issue (5): 866-872    DOI: 10.3785/j.issn.1008-973X.2012.05.015
自动化技术、电气工程     
基于MDS-MAP和非线性滤波的WSN定位算法
陈岁生1,2,卢建刚1,楼晓春2
1. 浙江大学 工业控制技术国家重点实验室,浙江 杭州 310027;2. 杭州职业技术学院 友嘉机电学院, 浙江 杭州 310018
Localization algorithm for wireless sensor networks
based on MDS-MAP and nonlinear filtering
Chen Sui-sheng1,2,Lu Jian-gang1,Lou Xiao-chun2
1. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China;
2. Fair Friend School of Electromechanics, Hangzhou Vocational & Technical College, Hangzhou 310018, China.
 全文: PDF  HTML
摘要:

为提高传感器网络节点的定位精度,对MDS-MAP结合非线性滤波方法的多种传感器网络定位算法进行研究.根据传感器节点间距离与节点定位坐标之间存在的非线性关系,在MDS-MAP定位算法的基础上,引入扩展卡尔曼滤波(EKF)求精算法和不敏卡尔曼滤波(UKF)求精算法,对MDS-MAP求得的节点坐标进行求精.对MDS-MAP定位算法、MDS-MAP和EKF相结合的定位算法(MDS-EKF)、MDS-MAP和UKF相结合的定位算法(MDS-UKF)的定位精度进行比较.实验结果表明:EKF和UKF等非线性滤波方法的应用可以提高定位精度,在相同条件下MDS-UKF定位算法的定位精度更高并且其生成的网络拓扑图最接近于实际网络拓扑图.

Abstract:

 New localization algorithms for wireless sensor networks which combine multidimensional scaling-map (MDS-MAP) and nonlinear filtering were studied to improve the localization accuracy of sensor nodes. According to the nonlinear relationship between the sensor node distances and the node localized coordinates, the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) were applied to refine the localized coordinates obtained by the MDS-MAP algorithm. The localization accuracies of these three different localization algorithms, MDS-MAP, MDS-EKF (combination of MDS-MAP and EKF) and MDS-UKF (combination of MDSMAP and UKF), were compared. Experimental results show that the implementation of nonlinear filtering algorithms (EKF and UKF) can improve the localization accuracy. Under the same conditions, the MDS-UKF localization algorithm achieves the best accuracy and its generated network topology is the closest to the actual network topology.

出版日期: 2012-05-01
:  TP 393  
基金资助:

国家“973”重点基础研究发展规划资助项目(2012CB720500); 国家自然科学基金资助项目(21076179); 浙江省自然科学基金项目(Y1101355).

通讯作者: 卢建刚,男,教授.     E-mail: jglu@iipc.zju.edu.cn
作者简介: 陈岁生(1969-),男,副教授,主要研究方向为无线传感器网络、工业仪表与控制装备. E-mail: css@hzvtc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈岁生,卢建刚,楼晓春. 基于MDS-MAP和非线性滤波的WSN定位算法[J]. J4, 2012, 46(5): 866-872.

Chen Sui-sheng,Lu Jian-gang,Lou Xiao-chun. Localization algorithm for wireless sensor networks
based on MDS-MAP and nonlinear filtering. J4, 2012, 46(5): 866-872.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.05.015        http://www.zjujournals.com/eng/CN/Y2012/V46/I5/866

[1] YI X, LIU Y, DENG L. A novel environment selfadaptive localization algorithm based on RSSI for wireless sensor networks [C]∥ IEEE International Conference on Wireless Communications, Networking and Information Security. Beijing: IEEE Press, 2010: 360-363.
[2] ZHANG S, CAO J, CHEN L, et al. On accuracy of regionbased localization algorithms for wireless sensor networks [C]∥ IEEE 6th International Conference on Mobile Adhoc and Sensor Systems. Macau: IEEE Press, 2009: 30-39.
[3] WANG C , LIU K, XIAO N. A range free localization algorithm based on restrictedarea for wireless sensor networks [C]∥ The Third International Multi Conference on Computing in the Global Information Technology. Athens: IEEE Computer Society Press, 2008: 97-101.
[4] 陈娟, 李长庚, 宁新鲜. 基于移动信标的无线传感器网络节点定位[J]. 传感技术学报, 2009, 22(1): 121-125.
CHEN Juan, LI Changgeng, NING Xinxian. Node localization of wireless sensor networks based on mobile beacon[J]. Chinese Journal of Sensors and Actuators, 2009, 22(1): 121-125.
[5] 马震, 刘云, 沈波. 分布式无线传感器网络定位算法MDSMAP(D)[J]. 通信学报, 2008, 29(6): 57-62.
MA Zhen, LIU Yun, SHEN Bo. Distributed location algorithm for wireless sensor networks MDSMAP(D)[J]. Journal of Communications, 2008, 29(6): 57-62.
[6] 梁玉琴, 曾庆化, 刘建业. 基于UKF滤波的WSN节点定位研究[J]. 传感技术学报, 2010, 23(6): 878-882
LIANG Yuqin, ZENG Qinghua, LIU Jianye. Research on node localization based on UKF for WSN [J]. Chinese Journal of Sensors and Actuators, 2010, 23(6): 878-882.
[7] Shang Y, Ruml W, Zhang Y, et al. Localization from mere connectivity [C]∥ Proceeding of the 4th ACM intl Symp on Mobile Ad Hoc Networking & Computing, Annapolis: ACM Press, 2003: 201-212.
[8] 李婷雪. 基于多维标度和距离校正技术的无线传感器网络定位研究[D]. 天津: 天津大学, 2008: 42-43.
LI Tingxue. Research on WSN localization based on MDS and distance correction technique[D]. Tianjing : Tianjing University, 2008: 42-43.
[9] 彭鑫. 无线传感器网络中基于多维标度的节点定位算法[D]. 长沙: 湖南大学, 2008: 34-35.
PENG Xin. A new method for the nonliner transformation of means and covariances in filters and estimations ultidimensional scalingbased sensor localization algorithm in wireless sensor network [D]. Changsha: Hunan University, 2008: 34-35.
[10] JULIER S J, UHLMANN J K. A new method for the nonliner transformation of means and covariances in filters and estimations [J]. IEEE Trans on AC, 2000, 45(3): 477-482.
[11] 刘国岁. 随机信号理论与应用[M]. 北京: 兵器工业出版社, 1992: 195-200.
[12] 付梦印, 邓志红, 闫莉萍. Kalman滤波理论及其在导航系统中的应用[M]. 北京: 科学出版社, 2010: 172-173.

[1] 郭童,林峰. 基于混合遗传鱼群算法的贝叶斯网络结构学习[J]. J4, 2014, 48(1): 130-135.
[2] 李德骏,汪港,杨灿军,金波,陈燕虎. 基于NTP和IEEE1588海底观测网时间同步系统[J]. J4, 2014, 48(1): 1-7.
[3] 杜瑞忠, 田俊峰, 张焕国. 基于信任和个性偏好的云服务选择模型[J]. J4, 2013, 47(1): 53-61.
[4] 张帅,孙建伶,徐斌,黄超,KAVS Aleksander J.. 基于RBAC的跨多企业服务组合访问控制模型[J]. J4, 2012, 46(11): 2035-2043.
[5] 杨朝晖,李善平,林欣. 增量型上下文信息服务的质量优化实时调度[J]. J4, 2012, 46(1): 90-97.
[6] 高庆,李善平,杨朝晖. 基于虚拟场的能量高效传感器网络地理路由[J]. J4, 2012, 46(1): 98-104.
[7] 潘巨龙,李善平,张道远. 无线传感器网络簇内可疑节点的博弈检测方法[J]. J4, 2012, 46(1): 72-78.
[8] 钱剑锋, 尹建伟, 董金祥. 结构化P2P网络的语义发布/订阅系统
负载均衡算法
[J]. J4, 2011, 45(10): 1710-1719.
[9] 杨朝晖,李善平,林欣. LBS中面向K-匿名服务资源约束的匿名度调节算法[J]. J4, 2011, 45(7): 1154-1160.
[10] 潘纲, 李石坚, 陈云星. ScudContext:信息-物理空间融合的大规模
环境上下文服务
[J]. J4, 2011, 45(6): 991-998.
[11] 车建华, 何钦铭, 陈建海, 王备. 基于软件模拟的虚拟机系统故障插入工具[J]. J4, 2011, 45(4): 614-620.
[12] 张莉苹,潘纲,郑能干,杨国青,李红,赵民德. SmartC模型与代码一致性双向生成方法及开发平台[J]. J4, 2011, 45(1): 20-29.
[13] 李鉴庭,金心宇,唐军,张昱. 基于无线多媒体传感器网络的目标定位方法[J]. J4, 2011, 45(1): 45-49.
[14] 舒挺, 孙守迁,王海宁,徐伟强. ESIS序列自适应生成算法[J]. J4, 2010, 44(11): 2183-2187.
[15] 陈友荣, 俞立, 董齐芬, 洪榛. 基于近邻算法的无线传感器网络功率控制[J]. J4, 2010, 44(7): 1321-1326.