Please wait a minute...
J4  2012, Vol. 46 Issue (4): 604-609    DOI: 10.3785/j.issn.1008-973X.2012.04.005
汤珂, 张玙, 唐文涛, 金滔
浙江大学制冷与低温研究所,浙江 杭州 310027
Transverse phase profile characteristics of oscillatory pipe flow
TANG Ke, ZHANG Yu, TANG Wen-tao, JIN Tao
Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML



Numerical simulation method was used to model and analyze the compressible oscillatory flow inside parallel plate channel in order to study the transverse velocity phase profile characteristics. The variation of velocity phase and its influence on the velocity profiles at the channel cross-section were investigated by comparing the velocity oscillations at different positions of the channel crosssection, and also by comparing the velocity profiles at different phase angles in a period. A qualitative discussion focused on the impact of Valensi number Va and maximum Reynolds number Remax on the phase profile characteristics based on the typical simulation results. An index parameter, crosssectional average phase difference (CAPD), was proposed to quantitatively describe the phase profile characteristics. The impact of Va and Remax on the phase profile characteristics was further quantitatively analyzed with the aid of index parameter CAPD. The analysis indicates that CAPD increases with a rise in Va, which has more significant influence on the transverse velocity phase profiles than Remax.

出版日期: 2012-05-17
:  TB 651  

国家自然科学基金资助项目(50890182);National Natural Science Foundation of China (50890182).

通讯作者: 金滔,男,教授.     E-mail:
作者简介: 汤珂(1978—),男,副教授,从事热声热机和交变流动传热等研究.E-mail:
E-mail Alert


汤珂, 张玙, 唐文涛, 金滔. 管内交变流动速度相位侧向分布特性[J]. J4, 2012, 46(4): 604-609.

TANG Ke, ZHANG Yu, TANG Wen-tao, JIN Tao. Transverse phase profile characteristics of oscillatory pipe flow. J4, 2012, 46(4): 604-609.


[1] RICHARDSON E G, TYLER E. The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established [C]∥Proceedings of the Physical Society. London: Institute of Physics and the Physical Society, 1929, 42(1): 1-15.
[2] ZHAO T S, CHENG P. Heat transfer in oscillatory flows [C]∥Annular Review of Heat Transfer. New York: Begell House, 1998, 9: 359-420.
[3] SERT C, BESKOK A. Numerical simulation of reciprocating flow forced convection in twodimensional channels [J]. Journal of Heat Transfer, 2003, 125(3): 403-412.
[4] WANG Y, HE Y L, TANG G H, et al. Simulation of twodimensional oscillating flow using the Lattice Boltzmann method [J]. International Journal of Modern Physics C, 2006, 17(5): 615-630.
[5] SHI L, YU Z B, JAWORSKI A J. Application of laserbased instrumentation for measurement of timeresolved temperature and velocity fields in the thermoacoustic system [J]. International Journal of Thermal Science, 2010, 49(9): 1688-1701.
[6] JAWORSKI A J, MAO X A, MAO X R, et al. Entrance effects in the channels of the parallel plate stack in oscillatory flow conditions [J]. Experimental Thermal and Fluid Science, 2009, 33(3): 495-502.
[7] TANG K, ZHANG Y, LIN X G, et al. Hydrodynamic and thermal development of compressible oscillatory flow inside circular channel [J]. Cryogenics, 2011, 51(3): 139-145.
[8] ANDERSON J D. Computational fluid dynamics [M]. New York: McGrawHill, 1995: 76-77.
[9] HINO M, SAWAMOTO M, TAKASU S. Experiments on transition to turbulence in an oscillatory pipe flow [J]. Journal of Fluid Mechanics, 1976, 75(2): 193-207.

[1] 甘智华,吴英哲,袁园,邱利民,张学军,张小斌,徐旭. 120 Hz单级脉管制冷机理论与实验[J]. J4, 2011, 45(11): 2014-2019.
[2] 甘智华,范炳燕,陈杰,等. 35K两级高频脉管制冷研究:Ⅱ.实验验证[J]. J4, 2009, 43(8): 1454-1457.
[3] 李卓裴,邱利民,刘国军,等. 热声发动机驱动的脉管制冷机模拟及实验研究[J]. J4, 2009, 43(8): 1458-1462.
[4] 甘智华,范炳燕,徐娜娜,等. 35K两级高频脉管制冷研究:Ⅰ.理论分析[J]. J4, 2009, 43(8): 1448-1453.