Please wait a minute...
J4  2012, Vol. 46 Issue (1): 177-181    DOI: 10.3785/j.issn.1008-973X.2012.01.28
生物医学工程     
基于增强的谱分析和奇异值分解的T波交替检测
王娟,黄忠朝,刘正春
中南大学 生物医学工程研究所,湖南 长沙 410083
T-wave alternans detection based on enhanced spectral method
and singular value decomposition
WANG Juan, HUANG Zhong-chao, LIU Zheng-chun
Institute of Biomedical Engineering, Central South University, Changsha 410083, China
 全文: PDF  HTML
摘要:

 针对传统谱分析方法在T波交替(TWA)检测中对噪声敏感的缺点,提出将增强的谱分析方法和奇异值分解方法结合起来的TWA检测方法.该方法利用奇异值分解得到去除了噪声干扰的心电信号,克服了传统谱分析方法只能检测平稳信号且需要增大心率的缺点,强调交替水平的重要性,即增强TWA功率谱上0.5cpb处的幅值,实现对TWA的有效分析.研究结果表明:该方法对T波交替数据库中30个人工合成并含有TWA的数据的检出准确率达93.33%,高于传统谱分析方法的TWA阳性检测率,能够提高交替比率.TWA检测率明显高于physionet网站中2008年挑战(TWA检测和定量分析)得分第一的算法实验结果(66.67%),说明该方法具有更强的TWA识别能力.

Abstract:

A method for the detection of T-wave alternans (TWA) was proposed through the fusion of enhanced spectral analysis and singular value decomposition in order to overcome the shortcoming of the traditional spectral analysis being sensitive to noise. Electrocardiosignal was effectively denoised by using singular value decomposition. The shortcomings of traditional spectral method including limitation to stationary signals and requirement of increased heart rates were overcome. The importance of alternans level was emphasized through increasing the amplitude of 0.5 cpb place on TWA spectrum in order to realize  the effective analysis of TWA. Results showed that the accuracy of the algorithm was 93.33% for 30 synthetic electrocardiograms containing TWA in T-wave alternans database with increased alternans ratio and accuracy compared with traditional spectral analysis, which was obviously better than the result (66.67%) from the algorithm scored first in physionet 2008 challenge (TWA detection and quantitative analysis). The method is more effective for identifying TWA.

出版日期: 2012-02-22
:  R 318.6  
基金资助:

国家自然科学基金资助项目(60801019);教育部高校博士点新教师基金资助项目(200805331085).

通讯作者: 刘正春,男,教授.     E-mail: liuzhengchunseu@126.com
作者简介: 王娟(1983-),女,硕士生,从事医学信号处理研究. E-mail: w.juan_2009@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王娟,黄忠朝,刘正春. 基于增强的谱分析和奇异值分解的T波交替检测[J]. J4, 2012, 46(1): 177-181.

WANG Juan, HUANG Zhong-chao, LIU Zheng-chun. T-wave alternans detection based on enhanced spectral method
and singular value decomposition. J4, 2012, 46(1): 177-181.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.01.28        http://www.zjujournals.com/eng/CN/Y2012/V46/I1/177

[1] MOODY G B. The PhysioNet/computers in cardiology challenge 2008: Twave alternans [C]∥Computing in Cardiology. Bologna: IEEE , 2008: 505-508.
[2] HAGHJOO M, ARYA A, SADRAMELI M A. Microvolt Twave alternans: a review of techniques, interpretation, utility, clinical studies, and future perspectives [J]. International Journal of Cardiology, 2006, 109(3): 293-306.
[3] BEATA S, AGATA M L, JACEK K. Current developments in microvolt Twave alternans [J]. Indian Pacing and Electrophysiology Journal, 2006, 6(4): 214-225.
[4] MORENOMARTINEZ E. Enhanced spectral method for Twave alternans analysis [C]∥ 2007 IEEE International Symposium on Intelligent Signal Processing. New York: IEEE, 2007: 651-656.
[5] MATINEZ J P, OLMOS S. Methodological principles of T wave alternans analysis: a unified framework [J]. IEEE Transactions on Biomedical Engineering, 2005, 52(4): 599-611.
[6] KHAUSTOV A,NEMATI S, CLIFFORD G D. An opensource standard Twave alternans detector for benchmarking [C]∥ Computing in Cardiology. Bologna: IEEE, 2008: 509-512.
[7] LI C, ZHENG C, TAI C. Detection of ECG characteristic points using wavelet transforms [J]. IEEE Transactions on Biomedical Engineering, 1995, 42(1): 21-28.
[8] MARTNEZ J P, ALMEIDA R, OLMOS S. A waveletbased ECG delineator: evaluation on standard databases [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(4): 570-581.
[9] SHEN T W, TSAO Y T. An improved spectral method of detecting and quantifying Twave alternans for SCD risk evaluation [C]∥Computing in Cardiology. Bologna: IEEE, 2008: 609-612.
[10] ADAM D R, SMITH J M, AKSELROD S, et al. Fluctuations in Twave morphology and susceptibility to ventricular fibrillation [J]. Journal of Electrocardiology, 1984, 17(3): 209-218.
[11] RICHTER S, DURAY G, HOHNLOSER S H. How to analyze Twave alternans [J]. Heart Rhythm, 2005, 2(11): 1268-1271.
[12] GHAFFARI A, HOMAEINEZHAD M R, ATAROD M. Detecting and quantifying Twave alternans using the correlation method and comparison with the FFTbased method [C]∥Computing in Cardiology. Bologna: IEEE, 2008: 761-764.
[13] 刘雄飞,郭爽,李长庚,等.非均匀噪声分布心电信号的奇异值小波消噪法[J]. 中南大学学报:自然科学版,2009, 40(5): 1374-1380.
LIU Xiongfei, GUO Shuang, LI Changgeng, et al. Denoising method for electrocardiograph of nonuniform noise distribution based on singular value decomposition and wavelet transform [J]. Journal of Central South University: Engineering Science, 2009, 40(5): 1374-1380.
[14] 段向阳,王永生,苏永生.基于奇异值分解的信号特征提取方法研究[J].振动与冲击,2009, 28(11): 30-33.
DUAN Xiangyang, WANG Yongsheng, SU Yongsheng. Feature extraction methods based on singular value decomposition [J]. Journal of Vibration and Shock, 2009, 28(11): 30-33.
[15] Indexof/challenge/2008/sources/Sieed [EB/OL]. 2008-09-01. http:∥www.physionet.org/challenge/2008/sources/Sieed/twa.m.
[16] File: reference ranks [EB/OL]. 2008-09-01. http:∥www.physionet.org/challenge/2008/reference-ranks.

[1] 程功, 王江容, 吴成雄, 胡宁, 周洁, 王平. 细胞生理多参数自动分析仪的
软件设计及算法分析
[J]. J4, 2012, 46(12): 2285-2292.
[2] 吴成雄,蔡华,胡宁,胡朝颖,程功,肖丽丹,余辉,王平. 基于集成芯片的细胞生理多参数自动分析仪[J]. J4, 2012, 46(9): 1715-1721.