Please wait a minute...
J4  2011, Vol. 45 Issue (4): 699-707    DOI: 10.3785/j.issn.1008-973X.2011.04.019
土木工程、建筑工程     
矿渣聚丙烯纤维混凝土抗弯疲劳性能
张慧莉, 田堪良
西北农林科技大学 水利与建筑工程学院,陕西 杨凌712100
Flexural fatigue performance of polypropylene fiber
reinforced concrete containing slag
ZHANG Hui-li, TIAN Kan-liang
College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
 全文: PDF  HTML
摘要:

为了研究聚丙烯纤维和磨细粒化高炉矿渣(GGBFS)在不同应力水平和频率下对混凝土抗弯疲劳性能的影响,将4个配比的聚丙烯纤维和5个配比的矿渣分别掺入混凝土中,当应力水平为0.49、0.59、0.69,频率为20 Hz时以及应力水平为0.59,频率为30、40、50、60 Hz时测试抗弯疲劳极限强度和疲劳寿命.研究表明:累积抗弯疲劳强度能够更准确地评价混凝土抗弯疲劳性能;聚丙烯纤维可以提高混凝土累积抗弯疲劳强度和抗疲劳寿命;矿渣及其水化物使得混凝土结构密实,改善了界面过渡区(ITZ)的结构,可以提高混凝土抗弯疲劳性能;抗弯疲劳性能随着应力水平提高而下降,SN数学模型可以用于预测20 Hz频率动疲劳荷载下的矿渣聚丙烯纤维混凝土工程寿命;在一定的应力水平下,测试频率越高,抗弯疲劳性能越差,fN数学模型可以用于预测变频率动疲劳荷载下的矿渣聚丙烯纤维混凝土工程寿命.

Abstract:

The effect of polypropylene fiber and ground granulated blast furnace slag (GGBFS) on the flexural fatigue performance in concrete was analyzed at different stress levels and different frequencies. Four polypropylene fibers’ volume fractions were considered. Slag was used as a replacement by weight of cement with five design proportions. An experimental investigation was conducted to obtain the fatigue lives of concrete at 0.49,0.59,0.69 stress levels in 20 Hz frequency and at a constant stress level of 0.59 in 30,40,50,60 Hz frequency respectively. Results show that flexural fatigue cumulative strength is more accurate to evaluate the concrete flexural fatigue performance; the incorporation of polypropylene fiber improves flexural fatigue cumulative strength and fatigue life span; slag particles and its hydrated products benefit the density of concrete microstructure, which improves interface transition zone (ITZ) structure and benefits flexural fatigue performance. Fatigue properties decreased as the stress level increasing, and the S-N models can be used to predict the engineering life span of polypropylene fiber concrete under the dynamic fatigue load of 20 Hz frequency. At a constant stress leve,the higher the frequency, the flexural fatigue performance is poor; the f-N models can be used to predict concrete life span at different frequency.

出版日期: 2011-05-05
:  TU 528.01  
基金资助:

国家科技支撑计划资助项目(2006BAD11B03);陕西省自然科学基金资助项目(SJ08E111);2007西北农林科技大学归国人才基金资助项目(011404).

作者简介: 张慧莉(1969—),女,河南淅川人,副教授,从事高性能混凝土的研究. E-mail:huilizhang163@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张慧莉, 田堪良. 矿渣聚丙烯纤维混凝土抗弯疲劳性能[J]. J4, 2011, 45(4): 699-707.

ZHANG Hui-li, TIAN Kan-liang. Flexural fatigue performance of polypropylene fiber
reinforced concrete containing slag. J4, 2011, 45(4): 699-707.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.04.019        http://www.zjujournals.com/eng/CN/Y2011/V45/I4/699

[1] SONG P S, HWANG S, SHEU B C. Strength properties of nylonand polypropylenefiberreinforced concretes [J]. Cement and Concrete Research, 2005, 35(8): 1546-1550.
[2] SUKONTASUKKU P. Tensile behaviour of hybrid fiberreinforced concrete [J]. Advance in Cement Research, 2004, 31(3): 115-122.
[3] TAYYIB A, Al ZAHRAN A J, IAHRANI M M, et al. Effect of polypropylene fiber reinforcement on the properties of fresh and hardened concrete in the Arabian gulf environment [J]. Cement and Concrete Research, 1988, 18(4): 561-570.
[4] YAO W, ZHONG W. Effect of polypropylene fibers on the longterm tensile strength of concrete [J]. Journal of Wuhan University of TechnologyMaterials Science Edition, 2007, 22(1): 52-55.
[5] SABIR B B. Toughness and tortuosity of polypropylene fibre reinforced concrete [J]. Magazine of Concrete Research, 2001, 53(3): 163-170.
[6] SUJI D, NATESAN S C, URUGESAN R. Experimental study on behaviors of polypropylene fibrous concrete beams [J]. Journal of Zhejiang University: Science A, 2007, 8(7): 1101-1109.
[7] SABIR B B, SUMMERHAVEAS S D, ASILI M. The fracture toughness of fibre reinforced concrete [C]∥ International Symposium on Fibre Reinforced Concrete. India: [s. n.], 1987: 1173-1184.
[8] TODORKA P, CHRISTIAN M. Lowcycle fatigue of plain and fiberreinforced concrete [J]. ACI Materials Journal, 1997, 94(4): 273-286.
[9] NAGABHUSHANAM M, RAMAKRISHNAN V, VONDRAN G. Fatigue strength of fibrillated strength of fiber reinforced concretes [C]∥ Transportation Research Record No. 1226, International Symposium on Recent Developments in Concrete Fiber Composites. Washington: Transportation Research Board, 1989: 36-47.
[10] VONDRAN G L, NAGABHUSHANAM M, RAMAKRISHNAN V. Fiber reinforced cements and concretes: recent developments [M]. Cardiff: [s. n.], 1989.
[11] HUA Y, ZHOU Taiquan, LIAN Junjing. Study on the fracture energy and fracture toughness of the polypropylene fiber reinforced concrete [J]. Key Engineering Materials (Switzerland), 2007, 35(3): 1251-1254.
[12] KAMAL T, JAMSHID A, RODOLFO R. Fatigue cracking of polypropylene fiber reinforced concrete [J]. ACI Materials Journal, 1999, 96 (2): 226-233.
[13] GUO Liping, SUN Wei, ZHENG Keren, et al. Study on the flexural fatigue performance and fractal mechanism of concrete with high proportions of ground granulated blastfurnace slag [J]. Cement and Concrete Research, 2007, 37(2): 242-250.
[14] GUO Liping, SUN Wei, ZHENG Keren, et al. Influence of dosages of ground granulated blastfurnace slag and fly ash on flexural fatigue performance of concrete [J]. Journal of Southeast University: Natural Science Edition, 2006, 36(1): 124-128.
[15] GOULIAS D G. High performance concrete materials for pavement structures [J]. High Performance Structures and Composites, 2002,31(3): 17-21.
[16] GOULIAS D G. Characterization and performance of high performance concrete for pavements [J]. High Performance Structures and Composites, 2004, 33(1): 35-39.
[17] KIM H, GOULIAS D G. High performance concrete for pavements [C]∥ The 1st International Conference on Recent Advances in Concrete Technology. Arlington: [s.n.], 2007: 123-127.
[18] RAMAKRISHANAN V, GOLLAPUDI S, ZELLERS R. Performance characteristics and fatigue strength of polypropylene fiber reinforced concrete [C]∥ Symposiums on Fiber Reinforced Concrete Properties and Applications. Farmington Hills: American Concrete Institute, 1987: 159-169.
[19] EWART L, SURESH S. Dynamic fatigue crack growth in polycrystalline alumina under cyclic compression [J]. Journal of Materials Science Letters, 1986(5): 774-778.
[20] RAMAKRISHNAN V, MALHOTRA V M, LANGLEY W S. Comparative evaluation of flexural fatigue behavior of highvolume fly ash and plain concrete [J]. ACI Material Journal, 2001, 229(1): 351-368.
[21] MINER M A. Cumulative damage in fatigue [J]. Journal of the Applied Mechanics, 1945, 12 (9): 159-164.
[22] FARRAN J. The transition zone: discovery and development [M]. London: [s. n.], 1994.
[23] FRIGIONE M, SERSALE R.Microcracking propagation in flexural loaded Portland and high slag cement concretes [C]∥ Proceeding of the 8th International Congress on the Chemistry of Cement. Janeiro: [s. n.], 2001.
[24] 李亚杰,方坤河.建筑材料[M].北京:中国水利水电出版社,2008: 46-47.
[25] 龚爱民,孙海燕,彭玉林.聚丙烯纤维对新拌混凝土性能的影响[J].建筑材料学报,2007,10(4): 488-492.
GONG Aimin, SUN Haiyan, PENG Yulin. Experimental study of effect of polypropylene fiber on concrete workability [J]. Journal of Building Materials, 2007, 10(4): 488-492.
[26] 李崇志,冯乃谦.梳形聚羧酸系减水剂与水泥的相容性研究[J].建筑材料学报,2004,7(3): 252-260.
LI Chongzhi, FENG Naiqian. Study on compatibility of comb like polycarboxylic acid type water reducer with cements [J]. Journal of Building Materials, 2004, 7(3): 252-260.
[27] 孟涛,钱晓倩,詹树林.含有复合胶凝材料的砼力学性能及其微观结构机理分析[J].浙江大学学报:工学版,2002,36(5): 553-558.
MENG Tao, QIAN Xiaoqian, ZHAN Shulin. Mechanical properties and microstructure analysis of concrete adding high performance composite cementious material [J]. Journal of Zhejiang University: Engineering Science, 2002, 36(5): 553-558.

[1] 王雪松, 金贤玉, 田野, 李蓓, 金南国. 开裂混凝土中钢筋加速锈蚀方法适用性[J]. J4, 2013, 47(4): 565-574.
[2] 王雪松, 金贤玉, 田野, 金南国. 基于非均匀锈蚀的带肋钢筋黏结性能[J]. J4, 2013, 47(1): 154-161.
[3] 蒋梅玲, 金贤玉, 田野, 金南国. 基于断裂力学和损伤理论的混凝土开裂模型[J]. J4, 2011, 45(5): 948-953.