Please wait a minute...
J4  2010, Vol. 44 Issue (12): 2396-2400    DOI: 10.3785/j.issn.1008-973X.2010.12.027
化学工程     
气液搅拌槽内气泡尺寸与局部气含率的CFD模拟
李良超, 王嘉骏, 顾雪萍, 冯连芳, 李伯耿
浙江大学 化学工程联合国家重点实验室,浙江 杭州 310027
computational fluid dynamics simulation of bubble size and
local gas holdup in stirred vessel
LI Liang-chao, WANG Jia-jun, GU Xue-ping, FENG Lian-fang, LI Bo-geng
State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

采用在欧拉-欧拉双流体模型的基础上耦合气泡数密度(BND)函数模型,引入气泡破碎和聚并函数,对双层组合桨气液搅拌槽内的气泡尺寸和局部气含率进行了计算流体力学(CFD)模拟,同时采用双电导电极探针法对搅拌槽内局部气液分散特性进行了实验测量,并和CFD模拟结果进行了对比.结果表明:较高通气量条件下搅拌槽内气泡尺寸和局部气含率分布很不均匀,气泡尺寸在叶轮排出流区较小,且沿着排出流方向逐渐增大;在两桨间区域和上层桨以上区域气泡以聚并为主;局部气含率在循环涡涡心、叶轮和挡板后部较高,叶片后部存在明显气穴.

Abstract:

The bubble size and local gas holdup in a stirred vessel with dual impellers were simulated numerically with computational fluid dynamics, in which the Euler-Euler multiphase flow model, multi-reference frame method and a transport equation for bubble number density (BND) function were combined. The effects of bubble coalescence and breakage were involved in the bubble number density function. The numerical results were in good agreement with the experimental values measured with double-tip conductivity probes. The results show that the bubble size and local gas holdup distribution in the stirred vessel are very non-uniform under relatively high superficial gas velocity. The bubble sizes in the impeller discharge region is quite small and increases with the discharge currents of the impeller. Bubbles coalescences play a dominant role in the inter-impeller region and the region above upper impeller. Local gas hold up is much high just behind the baffles and the blades where cavitation forms and in the centre of circulation loop.

出版日期: 2010-12-01
:  TQ 027.32  
基金资助:

国家重点基础研究专向经费资助项目(2005CB623804);长江学者和创新团队发展计划资助项目.

通讯作者: 王嘉骏,副教授.     E-mail: mixer@zju.edu.cn
作者简介: 李良超(1976—),男,安徽桐城人,博士生,从事多相流与计算流体力学研究.E-mail: tchllc@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李良超, 王嘉骏, 顾雪萍, 冯连芳, 李伯耿. 气液搅拌槽内气泡尺寸与局部气含率的CFD模拟[J]. J4, 2010, 44(12): 2396-2400.

LI Liang-chao, WANG Jia-jun, GU Xue-ping, FENG Lian-fang, LI Bo-geng. computational fluid dynamics simulation of bubble size and
local gas holdup in stirred vessel. J4, 2010, 44(12): 2396-2400.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.12.027        http://www.zjujournals.com/eng/CN/Y2010/V44/I12/2396

[1]  LAAKKONEN M, MOLLANEN P, MIETTINEN T. Local bubble size distributions in agitated vessel comparison of three experimental techniques [J]. Chemical Engineering Research and Design, 2005, 83 (1): 50-58.
[2] BARIGOU M, GRAVES M. A capillary suction probe for bubble size measurement [J]. Measurement Science Technology, 1991, 2(4): 318-326.
[3]GAO Zhengming, SMITH J M. Hans MüllerSteinhagen, void fraction distribution in sparged and boiling reactors with modern impeller configuration [J]. Chemical Engineering and Process, 2001, 40(6): 489-497.
[4] ALVES S S, MAIA C I, VASCONCELOS M T, et al. Bubble size in aerated stirred tanks[J].Chemical Engineering Journal,2002, 89(13): 109-117.
[5] MORUD K E,HJERTAGER B H. LDA measurements and CFD modeling of gasliquid flow in a stirred Vessel [J]. Chemical Engineering Science, 1996, 51 (2): 233-249.
[6] BOMBAC A, ZUN I. Gasfilled cavity structures and local void fraction distribution in vessel with dualimpeller [J]. Chemical Engineering Science, 2000, 55(15): 2995-3001.
[7] 宋月兰,高正明,李志鹏.多层新型桨搅拌槽内气液两相流动的实验与数值模拟[J].过程工程学报,2007,7(1): 24-28.
SONG Yuelan, GAO Zhengming, LI Zhipeng. Experimental study and numerical simulation of gasliquid flow in a stirred tank with a new multiple impeller [J]. The Chinese Journal of Process Engineering, 2007, 7 (1): 24-28.
[8] VENNEKER B J, DERKSEN J J, AKKER H A. Population balance modeling of aerated stirred vessels based on CFD [J]. AIChE J, 2002, 48(4): 673-685.
[9] LANE G L, SCHWARZ M P, EVANS G M. Predicting gasliquid flow in a mechanically stirred tank[J]. Applied Mathematical Modeling, 2002, 26(2): 223-235.
[10]LANE G L, SCHWARZ M P, EVANS G M. Numerical modeling of gasliquid flow in stirred tanks [J]. Chemical Engineering Science, 2005,60(8/9): 2203-2214.

[11]KERDOUSS F, BANNARI A, PROULX P. CFD modeling of gas dispersion and bubble size in a double turbine stirred tank [J]. Chemical Engineering Science, 2006, 61(10): 3313-3322.
[12] WU Q, KIM S, ISHII M. Onegroup interfacial area transport in vertical bubbly flow [J].International Journal of Heat and Mass Transfer, 1997, 41(8/9): 1103-1112.
[13] SCHILLER L, NAUMANN Z. A drag coefficient correlation [J]. Z.Ver.Deutsch.Ing., 1935,77: 318-325.
[14] LOPEZ DE BERTODANO M. Two fluid model for twophase turbulent jet [J]. Nuclear Engineering and Design, 1998, 179: 65-74.
[15] 林松,李良超,王嘉骏,等.鼓泡塔中气泡尺寸分布和局部气含率研究[J].化学工程,2008,36 (2): 21-24.
LIN Song, LI Liangchao, WANG Jiajun, et al. Study on bubble size distribution and local gas holdup in bubble column [J]. Chemical Engineering (China), 2008, 36 (2): 21-24.
[16] CHESTERS A K. The modeling of coalescence processes in fluidliquid dispersions: A review of current understanding [J]. Transactions of the Institution of Chemical Engineers, 1991, 69(4): 259-270.
[17] 王凯,冯连芳.混合设备设计[M].北京:机械工业出版社,2000:78-89.

No related articles found!