J4  2010, Vol. 44 Issue (12): 2326-2331    DOI: 10.3785/j.issn.1008-973X.2010.12.015
 土木工程

1.浙江大学 土木工程学系,浙江 杭州 310058; 2.浙江大学 工程力学系,浙江 杭州 310027
Non-linear dynamics of cable-stayed beams
ZHU Jun1, YE Gui-ru1, XIANG Yi-qiang1, CHEN Wei-qiu2
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China；2. Department of Engineering
Mechanics, Zhejiang University, Hangzhou 310027, Chin
 全文: PDF  HTML

为了研究双索单梁组合体系的非线性动力响应,基于该组合体系的连续模型,建立索梁组合结构的运动方程,在对方程进行约化处理后,结合回传射线矩阵法求解了结构平面内线性特征模态,研究组合体系中索和梁之间的相互作用,并以此为基础采用一阶模态截断的方式构造了单自由度非线性方程，用于研究结构非线性动力响应.通过变量转换,应用同伦分析法给出了结构受外部简谐荷载作用下稳态周期解的级数解形式,求解结构在一阶共振频率附近的非线性频率振幅曲线,并通过数值算例讨论了各种参数对非线性动力特性的影响.结果显示：同伦分析法与其他方法相比，在计算强非线性问题时具有较大的优势.

Abstract:

The governing equations for the in-plane motion of a cable-stayed beam were obtained based on a continuum model. The linear eigenmodes were obtained via the method of reverberation-ray matrix after a standard condensation procedure, and the interaction between cable and beam was investigated. On basis of solution for the linear eignproblem, a single-degree-of-freedom non-linear model was then derived by the single-mode discretization. Though the variable transformation the homotopy analysis method was successfully applied to find the steady-state solution of the structure subjected to harmonic force, then the frequency-amplitude relations near primary resonance frequency were obtained to characterize the influence of various parameters on the non-linear dynamic behaviour of the system. The result show that the homotopy analysis method is more powerful the traditional perturbation method in strong non-linear problems.

 : O 327

#### 引用本文:

ZHU Jun, YE Gui-ru, XIANG Yi-qiang, CHEN Wei-qiu. Non-linear dynamics of cable-stayed beams. J4, 2010, 44(12): 2326-2331.

#### 链接本文:

 ［1］ GIMSING N J. Cable Supported Bridges ［M］. Chichester: Wiley, 1983. ［2］ FUJINO Y, WARNITCHAI P, PACHECO B M. An experimental and analytical study of autoparametric resonance in a 3DOF model of cablestayedbeam ［J］. Nonlinear Dynamics, 1993, 4(2): 111-138. ［3］ WARNITCHAI P, FUJINO Y, PACHECO B M, et al. An experimental study on active tendon control of cablestayedbridges ［J］. Earthquake Engineering and Structural Dynamics, 1993, 22(2): 93-111. ［4］ WARNITCHAI P, FUJINO Y, SUSUMPOW T. A nonlinear dynamic model for cables and its application to a cablestructure system ［J］. Journal of Sound and Vibration, 1995, 187(4): 695-712. ［5］ PINTO da COSTA A, MARTINS J A C, BRANCO F, et al. Oscillations of bridge stay cables induced by periodic motions of deck and/or towers ［J］. Journal of Engineering Mechanics, ASCE, 1996, 122(7): 613-622. ［6］ BROWNJOHN J M W, LEE J, CHEONG B. Dynamic performance of a curved cablestayed bridge ［J］. Engineering Structures, 1999, 21(11): 1015-1027. ［7］ CAETANO E, CUNHA A, TAYLOR C A. Investigation of dynamic cabledeck interaction in a physical model of a cablestayed bridge ［J］. Earthquake Engineering and Structural Dynamics, 2001, 29(4): 499-521. ［8］ GATTULLI V, LEPIDI M, MACDONALDC J H G, et al. Onetotwo globallocal interaction in a cablestayed beam observed through analytical, finite element and experimental models ［J］. International Journal of NonLinear Mechanics, 2005, 40(4): 571-588. ［9］ 亢战,钟万勰.斜拉桥参数振动问题的数值研究［J］.土木工程学报,1998,31(4): 1422. KANG Zhan, ZHONG Wanxie. Numerical study on parametric resonance of cable in cable stayed bridges ［J］. China Civil Engineering Journal, 1998, 31(4): 14-22. ［10］ 赵跃宇,蒋丽忠,王连华,等.索梁组合结构的动力学建模理论及其内共振分析［J］.土木工程学报,2004,37(3): 69-72. ZHAO Yueyu, JIANG Lizhong, WANG Lianhua, et al. The dynamical modeling theory and internal resonance of cablebeam composite structure ［J］. China Civil Engineering Journal, 2004, 37(3): 69-72. ［11］ 赵跃宇,杨相展,刘伟长,等.索梁组合结构中拉索的非线性响应［J］.工程力学,2006,23(11): 153-158. ZHAO Yueyu, YANG Xiangzhan, LIU Weizhang, et al. Nonlinear response of cables in cablestayed beam structrue ［J］. Engineering Mechanics, 2006, 23(11): 153-158. ［12］ HOWARD S M, PAO Y H. Analysis and experiments on stress waves in planar trusses ［J］. Journal of Engineering Mechanics, ASCE, 1998, 124(8): 884-891. ［13］ PAO Y H, KEH D C, HOWARD S M. Dynamic response and wave propagation in plane trusses and frames ［J］. AIAA Journal, 1999, 37(5): 594-603. ［14］ PAO Y H, CHEN W Q, SU X Y. The reverberationray matrix and transfer matrix analyses of unidirectional wave motion ［J］. Wave Motion, 2007, 44(6): 419-438. ［15］ NAYFEH A H. Perturbation Methods ［M］. New York: Wiley, 2000： 213-243. ［16］ LIAO S J. Beyond Perturbation: Introduction to the Homotopy Analysis Method ［M］. Boca Raton: Chapman & Hall/CRC Press, 2003: 15-18. ［17］ 廖世俊.超越摄动法:同伦分析方法基本思想及其应用［J］.力学进展,2008,38(1): 1-34. LIAO Shijun. Beyond perturbation: the basic concepts of the homotopy analysis method and its application ［J］. Advances in Mechanics, 2008, 38(1): 1-34.
 No related articles found!