Please wait a minute...
J4  2010, Vol. 44 Issue (12): 2314-2319    DOI: 10.3785/j.issn.1008-973X.2010.12.013
土木工程     
基于Arlequin方法的结构多尺度数值模拟
乔华1, 陈伟球1,2
1.浙江大学 土木工程学系,浙江 杭州 310058; 2.浙江大学 工程力学系,浙江 杭州 310027
Multi-scale numerical simulation of structures
based on Arlequin method
QIAO Hua1, CHEN Wei-qiu1,2
1.Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China;
2. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

考察了Arlequin方法以及其在结构多尺度数值模拟中的应用.简要总结了国内外最新的可用于大型结构多尺度数值模拟的方法,并详细介绍了Arlequin方法的基本概念及其线弹性问题的连续和离散列式.探讨Arlequin方法中能量分配函数、耦合算子、H1算子中缩放参数等关键参数的选取方法.基于Matlab软件编制了相应的多尺度分析程序并对一维杆和二维平面梁进行了多尺度分析,分析结果验证了Arlequin多尺度分析的可行性并表明其在保证分析精度的同时可以提高计算效率.同时基于ABAQUS软件的二次开发功能对带V型切口的平板进行了应力分析,为进一步的大型结构多尺度模拟奠定了基础.

Abstract:

This work was concerned with the Arlequin theory and its application to numerical simulation of structures. Various available multi-scale simulation methods of large-scale structures were overviewed. The basic concept of the Arlequin method and its continuous and discrete formulations for linear elastic problems were introduced. The selection of key parameters such as the weight functions and coupling operators as well as the scaling parameter of H1 coupling operator was suggested. The program based on Matlab software was developed and the multiscale analysis of a onedimensional rod and a two-dimensional beam was conducted. The numerical results verify the feasibility of the Arlequinmultiscale analysis with the same precision and higher efficiency. The stress in a V-notched plate was also investigated by implementing the Arlequin method into ABAQUS software, indicating the potential in the multi-scale study of large-scale structures.

出版日期: 2010-12-01
:  TU 311.4  
基金资助:

国家杰出青年科学基金资助项目(10725210);国家“973”重点基础研究规划资助项目(2009CB623204).

通讯作者: 陈伟球,男,教授.     E-mail: chenwq@zju.edu.cn
作者简介: 乔华(1979—),男,江苏人,博士生,从事结构多尺度数值模拟研究. E-mail: Huaqiao008@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

乔华, 陈伟球. 基于Arlequin方法的结构多尺度数值模拟[J]. J4, 2010, 44(12): 2314-2319.

QIAO Hua, CHEN Wei-qiu. Multi-scale numerical simulation of structures
based on Arlequin method. J4, 2010, 44(12): 2314-2319.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.12.013        http://www.zjujournals.com/eng/CN/Y2010/V44/I12/2314

[1] CURTIN W A, MILLER R E. Atomistic/continuum coupling in computational materials science [J]. Modelling and Simulation in Materials Science and Engineering, 2003, 11(3): R33-R68.
[2] LIU W K, KARPOV E G, ZHANG S, et al. An introduction to computational nano mechanics and materials [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193 (1720): 1529-1578.
[3] 吴佰建,李兆霞,汤可可. 大型土木结构多尺度模拟与损伤分析:从材料多尺度力学到结构多尺度力学 [J]. 力学进展, 2007, 37(3): 321-336.
WU B J, LI Z X, TANG K K. Multiscale modeling and damage analyses of large civil structure: multiscale mechanics from material to structure[J]. Advances in Mechanics, 2007, 37(3):321-336.
[4] HUGHES T J R. Multiscale phenomena: green’s functions, the DirichlettoNeumann formulation, subgrid scale models, bubbles and the origins of stabilized methods [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127(14): 387-401.
[5] HETTICH T, HUND A, RAMM E. Modeling of failure in composites by XFEM and level sets within a multiscale framework [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(5): 414-424.
[6] FISH J, MARKOLEFAS S. The sversion of the finite element method for multilayer laminates [J]. International Journal for Numerical Methods in Engineering, 1992, 33(5): 1081-1105.
[7] MAIGEFEIRETI M, MASANORI K, MAMTIMIN G. Multiscale strength evaluations of SiC particle reinforced aluminum alloy by using FEM superposition method [J]. Advanced Materials Research, 2008, 3337: 731-736.
[8] NAKASUMI S, SUZUKI K, FUJII D, et al. Mixed analysis of shell and solid elements using the overlaying mesh method [J]. Journal of Marine Science and Technology, 2003, 7(4): 180-188.
[9] OKADA H, ENDOH S, KIKUCHI M. On fracture analysis using an element overlay technique [J]. Engineering Fracture Mechanics, 2005, 72(5): 773-789.
[10] LEE S H, SONG J H, YOON Y C, et al. Combined extended and superimposed finite element method for cracks [J]. International Journal for Numerical Methods in Engineering, 2004, 59(8): 1119-1136.
[11] NAKASUMI S, SUZUKI K, OHTSUBO H. Crack growth analysis using mesh superposition technique and XFEM [J]. International Journal for Numerical Methods in Engineering, 2008, 75(3): 291-304.
\
[12\]SERGEY V P, PENG G, LEE J F. Algebraic multigrid method for solving FEM matrix equations for 3D static problems \
[J\]. IEEE Transactions on Magnetics, 1999, 35(3): 1183.
[13] RANNOU J, GRAVOUIL A, COMBESCURE A. A multigrid extended finite element method for elastic crack growth simulation [J]. European Journal of Computational Mechanics, 2007, 16(2): 161-182.
[14] LI Z X, ZHOU T Q, CHAN T H T, et al. Multiscale numerical analysis on dynamic response and local damage in longspan bridges [J]. Engineering Structures, 2007, 29(7): 1507-1524.
[15] GUIDAULT P A, ALLIX O, CHAMPANEY L, et al. A twoscale approach with homogenization for the computation of cracked structures [J]. Computers and Structures, 2007, 85(17/18): 1360-1371.
[16] BEN DHIA H. Multiscale mechanical problems: the Arlequin method [J]. C R Acad Sci  IIb 1998, 326(12): 899-904.
[17] BEN DHIA H, RATEAU G. The Arlequin method as a flexible engineering design tool [J].International Journal for Numerical Methods in Engineering, 2005, 62(11): 1442-1462.
[18] HU H, BELOUETTAR S, POTIERFERRY M, et al. Multiscale modelling of sandwich structures using the Arlequin method Part I: Linear modelling [J]. Finite Elements in Analysis and Design, 2009, 45(1): 37-51.
[19] GUIDAULT P A, BELYTSCHKO T. On the L2 and the H1 couplings for an overlapping domain decomposition method using Lagrange multipliers [J]. International Journal for Numerical Methods in Engineering, 2007, 70(3): 322-350.

No related articles found!