Please wait a minute...
J4  2010, Vol. 44 Issue (9): 1637-1642    DOI: 10.3785/j.issn.1008-973X.2010.09.002
浙江大学 超大规模集成电路设计研究所,浙江 杭州 310027
Edge adaptive four-point piecewise parabolic scaler implementation
DING Yong, WANG Xiang, YAN Xiao-lang
Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML



The common difficulty with conventional interpolation techniques is to preserve the details in image, i.e. edges, so how to interpolate the pixels along or nearby edges becomes a core problem of scaling algorithms.  To deal with this problem, an edge adaptive fourpoint piecewise parabolic scaling algorithm was presented in this paper, in which the pixels along or nearby edges were interpolated by edge direction oriented method. In hardware implementation, an efficient VLSI architecture based on Farrow structure was developed. Experimental results show that the proposed algorithm can achieve arbitrary expansion as well as preserving edges in image, and its hardware cost is lower than that of the  cubic interpolation algorithm.

出版日期: 2010-09-01
:  TP 752  


作者简介: 丁勇(1974-), 男, 山东青岛人, 高级工程师, 从事数字音视频SoC研究. E-mail:
E-mail Alert


丁勇, 王翔, 严晓浪. 边缘自适应的四点分段抛物线图像缩放[J]. J4, 2010, 44(9): 1637-1642.

DING Yong, WANG Xiang, YAN Xiao-Lang. Edge adaptive four-point piecewise parabolic scaler implementation. J4, 2010, 44(9): 1637-1642.


[1] GONZALEZ R C, WOODS R E. Digital image processing [M]. Englewood Cliffs, NJ: PrenticeHall, 2002.
[2] KEYS R G. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, Signal Processing, 1981, ASSP29(6): 11531160.
[3] MEIJERING E, UNSER M. A note on cubic convolution interpolation [J]. IEEE Transactions on Image Processing, 2003, 12(4): 477479.
[4] MAELAND E. On the comparison of interpolation methods [J]. IEEE Transactions on Medical Imaging, 1988, 7(3): 213217.
[5] ERUP L, GARDNER F M, HARRIS R A. Interpolation in digital modems—part II: implementation and performance [J]. IEEE Transactions on Communications, 1993, 41(6): 9981008.
[6] MARSI S, CARRATO S, RAMPONI G. VLSI implementation of a nonlinear image interpolation filter [J]. IEEE Transactions on Consumer Electronics, 1996, 42(3): 721728.
[7] 王效灵, 陈涛, 汪颖, 等. 边沿自适应图像缩放算法 [J]. 浙江大学学报:工学版, 2006, 40(9): 15071510.
WANG Xiaoling, CHEN Tao, WANG Ying, et al. Edge adaptive image scaling algorithm [J]. Journal of Zhejiang University : Engineering Science, 2006, 40(9): 15071510.
[8] CHA Y J, KIM S. The erroramended sharp edge (EASE) scheme for image zooming [J]. IEEE Transactions on Image Processing, 2007, 16(6): 14961505.
[9] LEE J H, JEONG T. Edgeadaptive demosaicking for artifact suppression along line edges [J]. IEEE Transactions on Consumer Electronics, 2007, 53(3): 10761083.
[10] GARDNER F M. Interpolation in digital modems-part I: fundamentals [J]. IEEE Transactions on Communications, 1993, 41(3): 502508.
[11] FARROW C W. A continuously variable digital delay element [C]∥ Proceedings of IEEE International Symposium on Circuits and Systems. Espoo, Finland:IEEE, 1988, 3: 26412645.
[12] CARSON K S, WU Y C. On the design and efficient implementation of the farrow structure [J]. IEEE Signal Processing Letters, 2003, 10(7): 189192.
[13] VESMA J. A frequencydomain approach to polynomialbased interpolation and the farrow structure [J]. IEEE Transactions on Circuits and SystemsII: Analog and Digital Signal Processing, 2000, 47(3): 206209.

[1] 丁勇, 孙纲德, 严晓浪. 基于运动补偿和自适应插值的混合去隔行方法[J]. J4, 2011, 45(2): 323-329.