| 自动化技术 | 
									
										
		  							 | 
          							
		  									  								 
		  									  							    
		  									  								 
		  									  							 | 
        						 
      						 
      					 | 
  					 
  					
    					 | 
   					 
   										
    					| 基于支持向量机的时序周波波形分类方法 | 
  					 
  					  										
						| 胡志坤1, 王美铃1, 桂卫华2, 阳春华2, 丁家峰1 | 
					 
															
					| 1.中南大学 物理科学与技术学院,湖南 长沙 410083;中南大学 信息科学与工程学院,湖南 长沙 410083 | 
					 
										
						 | 
					 
   										
    					Support vector machine based classification method for  
timeseries periodic waveform | 
  					 
  					  					  					
						| HU Zhikun1, WANG Meiling1, GUI Weihua2, YANG Chunhua2, DING Jiafeng1 | 
					 
															
						1.School of Physics Science and Technology, Central South University, Changsha 410083, China; 
2. School of Information Science and Engineering, Central South University, Changsha 410083, China | 
					   
									 
				
				
					
						
							
								
									
									
									
									
									 
          
          
            
             
												
												
												
												
												
												引用本文: 
																													
																																胡志坤, 王美铃, 桂卫华, 阳春华, 丁家峰. 基于支持向量机的时序周波波形分类方法[J]. J4, 2010, 44(7): 1327-1332.	
																															 
																																								     												                                                    																													
																																HU Zhi-Kun, WANG Mei-Ling, GUI Wei-Hua, YANG Chun-Hua, DING Jia-Feng. Support vector machine based classification method for  
timeseries periodic waveform. J4, 2010, 44(7): 1327-1332.	
																															  
																												
														链接本文: 
															
																																	
																	http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.07.017
																	   或   
																																
																http://www.zjujournals.com/eng/CN/Y2010/V44/I7/1327
														    
														   
												 | 
												 
												 
												
												
												
             
                         
            
									            
									                
																														  
																|   [1] LIU Y H. Wavelet feature extraction for highdimensional microarray data [J]. Neurocomputing, 2009, 72(4/6): 985990. 
[2] LIAN X, CHEN L. Efficient similarity search over future stream time series [J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(1): 4054. 
[3] 胡志坤,徐飞,桂卫华,等.时序序列相似性度量的小波矩阵变换法[J].控制理论与应用,2009,26(10): 11051110. 
HU Zhikun, XU Fei, GUI Weihua, et al. Waveletmatrix transforming method for similarity measurement of fault waveform of electronic power devices [J]. Control Theory and Applications, 2009, 26(10): 11051110. 
[4] HU Z K, GUI W H, YANG C H, et al. A waveletmatrix transforming method for extracting feature vectors of sequences for similarity measurement [J]. International Journal of Control Automation, System, 2010, 8(2): 250256. 
[5] SONG L N, JI G R, CHEN J. Extraction of shell texture feature of coscinodiscus for classification based on wavelet and PCA [C]∥ International Joint Conference on Artificial Intelligence. Piscataway, NJ, USA: IEEE, 2009: 282285. 
[6] LIN C T, HUANG C H. A complex texture classification algorithm based on gabortype filtering cellular neural networks and selforganized fuzzy inference neural networks [C]∥ IEEE International Symposium on Circuits and Systems. Kobe, Japan: IEEE, 2005: 39423945. 
[7] MURPHEY Y L, OU G. Multiclass pattern classification using neural networks [J]. Pattern Recognition, 2007, 40(1): 418. 
[8] 梅雪,吴为麟.基于小波和ANN的电能质量分类方法[J].浙江大学学报:工学版,2004,38(10): 13841386. 
MEI Xue, WU Weilin. Power quality classification based on wavelet and artificial neural network [J]. Journal of Zhejiang University: Engineering Science, 2004, 38(10): 13841386. 
[9] GAO G H, ZHANG Y Z, ZHU Y, et al. Hybrid support vector machinesbased multifault classification [J]. Journal of China University of Mining and Technology, 2007, 17(2): 246250. 
[10] 杜树新,吴铁军.模式识别中的支持向量机方法[J].浙江大学学报:工学版,2003,37(5): 522527. 
DU Shuxin, WU Tiejun. Support vector machines for pattern recognition [J]. Journal of Zhejiang University: Engineering Science, 2003, 37(5): 522527. 
[11] GU H, WANG H W. Fuzzy prediction of chaotic time series based on singular value decomposition [J]. Applied Mathematics and Computation, 2007, 185(2): 11711185. 
[12] LIU Y H, YOU Z S, CAO L P. A novel and quick SVMbased multiclass classifier [J]. Pattern Recognition, 2006, 39(11): 22582264. 
[13] SUNGMOON C, SANG H O. SVM with binary tree architecture for multiclass classification [J]. Neural Information Processing Letters and Reviews, 2004, 2(3): 4751. 
[14] EVGENIOU T, PONTIL M, ELISSEEFF A. Leave one out error, stability, and generalization of voting combinations of classifiers [J]. Machine Learning, 2004, 55(1): 7197.  | 
															   
																													 
									             
									           
             
			            			 
			 
             
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
             
           
      
									
									
		
									
									
									
									
									
									 | 
								 
							 
						 | 
					 
				 
			
		 |