Please wait a minute...
J4  2010, Vol. 44 Issue (6): 1173-1177    DOI: 10.3785/j.issn.1008-973X.2010.06.023
化学工程     
超/近临界区含水量对乙酸丁酯酯交换反应的影响
吕秀阳, 傅杰, 孙辉
浙江大学 化学工程与生物工程学系,浙江 杭州 310027
Effects of water content on transesterification of butyl acetate
in
super/nearcritical region
LV Xiu-yang, FU Jie, SUN Hui
Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了阐明超/近临界区有机合成反应中水的作用机制,以乙酸丁酯与甲醇的酯交换反应作为模型体系,测定了240~320 ℃下不同水体积分数对乙酸丁酯酯交换反应的影响.以260 ℃的典型结果为例,实验结果可以分成3个区域:当水体积分数<3.2%时,乙酸丁酯的转化率随水体积分数增加而显著降低;水体积分数在3.2%~11.8%区域,乙酸丁酯转化率变化较少;当水体积分数超过11.8%后,乙酸丁酯转化率随着水体积分数增加快速上升.结果表明:水在该体系中同时起到了溶剂、反应物和催化剂的作用,同时水在超临界区和近临界区起的主要作用是不同的.

Abstract:

In order to elucidate the functions of water on the super/nearcritical organic reactions, transesterification of butyl acetate with methanol was selected as model reaction. Effects of volume fraction of water on transesterification of butyl acetate from 240 to 320 ℃ were studied and regular results were obtained. Taking typical results at 260 ℃ as example, the influence of water can be divided into three areas. For volume fraction of water less than 3.2%, the conversion of butyl acetate decreases sharply as water content increases while in the region of 3.2%11.8% volume fraction of water has litter influence on the butyl acetate conversion. For volume fraction of water more than 11.8%, the conversion of butyl acetate increases as volume fraction of water increases. It is concluded that water can act as solvent, reactant and catalyst at the same reaction system and it has different functions at nearcritical and supercritical region.

出版日期: 2010-07-16
:  TQ 032  
基金资助:

国家自然科学基金资助项目(20674068,20976160);浙江省自然科学基金资助项目(R4080110)

作者简介: 吕秀阳(1965—),男,浙江东阳人,研究员,博导,从事绿色化学与化工研究.Email: luxiuyang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吕秀阳, 傅杰, 孙辉. 超/近临界区含水量对乙酸丁酯酯交换反应的影响[J]. J4, 2010, 44(6): 1173-1177.

LV Xiu-Yang, FU Jie, SUN Hui. Effects of water content on transesterification of butyl acetate
in
super/nearcritical region. J4, 2010, 44(6): 1173-1177.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.06.023        http://www.zjujournals.com/eng/CN/Y2010/V44/I6/1173

[1] SAVAGE P E. Organic chemical reactions in supercritical water[J]. Chemical Reviews, 1999, 99(2): 603621.

[2] AKIYA N, SAVAGE P E. Roles of water for chemical reactions in hightemperature water[J]. Chemical Reviews, 2002, 102(8): 27252750.

[3] SISKIN M, KATRITZKY A R. Reactivity of organic compounds in hot water: geochemical and technological implications[J]. Science, 1991, 254(5029): 231237.

[4] 吕秀阳,何龙,鹿骋,等.肉桂醛绿色合成新方法[J].化工学报,2005,56 (5): 857860.

L Xiuyang, HE Long, LU Cheng, et al. Environmentally benign method for synthesis of cinnamaldehyde[J]. Journal of Chemical Industry and Engineering (China), 2005, 56 (5): 857860.

[5] SCHUCHARDT U, SERCHELI R, VARGAS R M. Transesterification of vegetable oils: a review[J]. Journal of the Brazilian Chemical Society, 1998, 9(1): 199210.

[6] WARABI Y, KUSDIANA D, SAKA S. Reactivity of triglycerides and fatty acids of rapeseed oil in superciritical alcohols [J]. Bioresource Technology, 2004, 91(3): 283287.

[7] KOMERS K, MACHEK J, STLOUKAL R. Biodiesel from rapeseed oil, methanol and KOH 2. Composition of solution of KOH in methanol as reaction partner of oil[J]. European Journal of Lipid Science and Technology, 2001, 103(6): 359362.

[8] KUSDIANA D, SAKA S. Effects of water on biodiesel fuel production by supercritical methanol treatment[J]. Bioresource Technology, 2004, 91(3): 289295.

[9] 安文杰,许德平,杜显云.超临界甲醇法制备生物柴油工艺探讨[J].粮食与油脂,2005 (8): 2123.

AN Wenjie, XU Deping, DU Xianyun. Technical discussion of producing biodiesel in supercritical methanol[J]. Cereals & Oils, 2005 (8): 2123.

[10] 童景山,李敬.流体热物理性质的计算[M].北京:清华大学出版社, 1982: 100102.

[1] 张涛, 陈汉庚, 张旭, 韦隆武, 钱超, 陈新志. 固定床催化合成N,N,N′,N′-四甲基乙二胺的研究[J]. J4, 2010, 44(12): 2401-2405.
[2] 张旭, 张涛, 陈小祥, 等. 管式反应器合成N,N-二甲基正丁胺[J]. J4, 2009, 43(09): 1684-1686.