Please wait a minute...
J4  2010, Vol. 44 Issue (5): 1043-1048    DOI: 10.3785/j.issn.1008-973X.2010.05.035
化学工程     
水翼非定常空化流场的数值模拟
郝宗睿, 王乐勤, 吴大转
浙江大学 化工机械研究所,浙江 杭州 310027
Numerical simulation of unsteady cavitating flow on hydrofoil
HAO Zong-rui, WANG Le-qin, WU Da-zhuan
Institute of Chemical Machinery and Process Equipment, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

采用修正的RNG k-ε湍流模型对8°攻角NACA0015水翼的非定常二维空化流场进行数值模拟,分析当空化数分别为1和1.5,对应雷诺数为3×105时绕翼型的非定常流动,得到不同空化数下的非定常空化流场结构及其演化过程的流动特性.计算结果表明,回射流在空泡的形成和发展过程中起着重要的作用.空泡首先出现于水翼的前缘,在其产生的位置形成一个顺时针的漩涡,漩涡沿水翼上表面向下游移动.空泡逐渐长大并脱落,在不同空化数下,空泡脱落的位置不同.空泡形成和发展过程中均伴有压力的波动,大空化数流场的压力波动幅度和频率都明显高于小空化数流场.

Abstract:

The unsteady cavitating flow around an NACA0015 hydrofoil at an angle of attack of 8°was simulated by a modified RNG kε turbulence model with two different cavitation numbers of 1 and 1.5, and the Reynolds number of 3×105. The structure of unsteady cavitating flow was obtained and so were the flow characteristics of its evolution process. Results show that the reentrant jet plays an important role in the initiation and development process of cavity. The cavity first appears in the leading edge. Then the clockwise vortex developed in the same location moves to downstream along the surface of hydrofoil. The cavity grows up gradually and sheds from the hydrofoil and the shedding locations are different according to the cavitation numbers. The initiation and development process of the cavity accompany the pressure fluctuation. The amplitude and the frequency of pressure fluctuation of cavitating flow with a large cavitation number are obviously greater than that with a smaller caviation number.

出版日期: 2012-03-19
:     
基金资助:

国家自然科学基金资助项目(10532010,50776077).

通讯作者: 吴大转,男,副教授.     E-mail: wudazhuan@zju.edu.cn
作者简介: 郝宗睿(1983—),男,山东青岛人,博士生,从事流体机械优化设计和控制的研究.E-mail: haozr001@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郝宗睿, 王乐勤, 吴大转. 水翼非定常空化流场的数值模拟[J]. J4, 2010, 44(5): 1043-1048.

HAO Zong-Rui, WANG Le-Qi, TUN Da-Zhuai. Numerical simulation of unsteady cavitating flow on hydrofoil. J4, 2010, 44(5): 1043-1048.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.05.035        http://www.zjujournals.com/eng/CN/Y2010/V44/I5/1043

[1] 黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991: 13.
[2] HUTTON S P. Studies of cavitation erosion and its relation to cavitation flow patterns[C]∥ International Symposium on Cavitation. Japan: [s.n.], 1986: 2129.
[3] KUBOTA A, KATO H, YAMAGUCHI H. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique [J]. Journal of Fluids Engineering, 1989, 111(2): 204210.
[4] ZHANG Y, GOPALAN S, KATZ J. On the flow structure and turbulence in the closure region of attached cavitation[C]∥ Proceedings of the ASME Fluids Engineering Summer Meeting. Washington DC: [s.n.], 1998: 227238.
[5] 李向宾,刘淑艳,王国玉,等.绕水翼空化的发展及其涡量场特性分析[J].北京理工大学学报,2008, 28(3): 192196.
LI Xiangbin, LIU Shuyan, WANG Guoyu, et al. Vorticity characteristics in cavitating flows around a hydrofoil[J]. Journal of Beijing Institute of Technology, 2008, 28(3): 192196.
[6] KUBOTA A, KATO H, YAMAGUCHI H. A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics, 1992, 240: 5996.
[7] SCHNERR G H, SAUER J. Physical and numerical modelling of unsteady cavitation dynamics[C]∥ 4th International Conference on Multiphase Flow. New Orleans: ICMF, 2001.
[8] SINGHAL A K, LI H, ATAHAVALE M M, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617624.
[9] KELLER A P, ROTT H K. The effect of flow turbulence on cavitation inception[C]∥ Proceedings of the ASME Fluids Engineering Division Summer Meeting. Vancouver: [s.n.], 1997.
[10] DULAR M, BACHERT R, STOFFEL B, et al. Experimental evaluation of numerical simulation of cavitating flow around hydrofoil[J]. European Journal of Mechanics B/Fluids, 2005, 24(4): 522538.
[11] COUTIERDELGOSHA O, FORTESPATELLA R, REBOUD J L. Evaluation of turbulence model influence on the numerical simulations on unsteady cavitation[J]. Journal of Fluids Engineering, 2003, 125(1): 3845.

[1] 宁志华,何乐年,胡志成. 一种高压高可靠性开关电源控制芯片[J]. J4, 2014, 48(3): 377-383.
[2] 李林,陈家旺,顾临怡,王峰. 轴向柱塞泵/马达变量阀配流机构[J]. J4, 2014, 48(1): 29-34.
[3] 陈钊,余锋,陈婷婷. 基于日志结构的闪存均衡回收策略[J]. J4, 2014, 48(1): 92-99.
[4] 蒋湛,姚晓明,林兰芬. 基于特征自适应的本体映射方法[J]. J4, 2014, 48(1): 76-84.
[5] 陈迪仕 ,张宇,李平. 微小型无人直升机地面效应建模[J]. J4, 2014, 48(1): 154-160.
[6] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[7] 杨鑫,许端清,杨冰. 基于不规则性的并行计算方法[J]. J4, 2013, 47(11): 2057-2064.
[8] 王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.
[9] 崔何亮, 张丹, 施斌.  布里渊分布式传感的空间分辨率及标定方法[J]. J4, 2013, 47(7): 1232-1237.
[10] 彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.
[11] 伍晓榕,裘乐淼,张树有,孙良峰,郭传龙. 模糊语境下的复杂系统关联FMEA方法[J]. J4, 2013, 47(5): 782-789.
[12] 金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.
[13] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.
[14] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[15] 杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.