Please wait a minute...
J4  2010, Vol. 44 Issue (4): 750-755    DOI: 10.3785/j.issn.1008-973X.2010.04.022
吕钰, 王智化, 杨卫娟, 周俊虎, 何沛, 岑可法
浙江大学 热能工程研究所,能源清洁利用国家重点实验室,浙江 杭州 310027
Numerical study of SNCR process in coalfired boiler with large capacity
LV Yu, WANG Zhi-hua, YANG Wei-juan, ZHOU Jun-hu, HE Pei, CEN Ke-fa
 全文: PDF  HTML

基于Fluent软件平台,对410 t/h燃煤锅炉中选择性非催化还原(SNCR)过程进行建模和模拟计算.计算结果与实验测量数据吻合很好,阐明了利用这种方法预测大空间、复杂温度场、复杂流场的锅炉炉膛中氮氧化物生成及还原过程的可行性.计算结果表明,在还原剂与氮氧化物初期混合条件有限的情况下,脱硝效果决定于物质的湍流扩散和温度场之间的相互作用.研究在不同喷射截面上温度和氨氮摩尔比对SNCR过程的影响,结果表明喷射截面应该取在平均温度位于SNCR“温度窗口”中部的截面所对应的高度处,在该工况下脱硝率在42%以上,且随氨氮摩尔比由1.0提高到2.2,脱硝率增长约58%.综合考虑尾部漏氨,氨氮摩尔比应该控制在1.4以下.


Modeling and numerical simulation for the selective noncatalytic reduction (SNCR) process in a 410 t/h coalfired boiler were conducted based on the Fluent software. Good agreement of the calculation results with the data measured in field experiment confirms the feasibility of the presented method for predicting the NOx formation and reduction processes in the furnace with large capacity, complex temperature field and complex flow field. The simulation shows that the NOx removal effect largely depends on the interaction between turbulence diffusion and temperature field, in the case that the reagent’s original mixing with NOx is quite limited. The influence of temperature level and NH3/NO molar ratio in different injecting crosssections on the SNCR process was studied. The results show that the injecting crosssection should be placed at the corresponding height of the crosssection whose temperature located in the middle of the SNCR “temperature window”. In this state, the NOx removal efficiency is above 42%, and it increases approximately by 58% when NH3/NO molar ratio rises from 1.0 to 2.2. However, considering the NH3 leakage in the empennage area simultaneously, NH3/NO molar ratio should be controlled bellow 1.4.

出版日期: 2010-05-14
:  TK229  


通讯作者: 王智化,男,副教授.     E-mail:
作者简介: 吕钰(1985—),男,山东潍坊人,硕士生,从事燃煤NOx控制及数值计算方面的研究. E-mail:
E-mail Alert


吕钰, 王智化, 杨卫娟, 周俊虎, 何沛, 岑可法. 大型燃煤锅炉SNCR过程数值研究[J]. J4, 2010, 44(4): 750-755.

LV Yu, WANG Zhi-Hua, YANG Wei-Juan, ZHOU Dun-Hu, HE Pei, CEN Ge-Fa. Numerical study of SNCR process in coalfired boiler with large capacity. J4, 2010, 44(4): 750-755.


[1] STBERG M, DAMJOHANSEN K. Empirical modeling of the selective noncatalytic reduction of NO: comparison with largescale experiments and detailed kinetic modeling [J]. Chemical Engineering Science, 1994, 49(12): 18971904.
[2] 王智化,周昊,周俊虎,等.不同温度下炉内喷射氨水脱除NOx的模拟与试验研究[J].燃料化学学报,2004,32(1): 4853.
WANG Zhihua, ZHOU Hao, ZHOU Junhu, et al. Modeling and experimental study on NOx reduction in furnace with ammonia injection [J]. Journal of Fuel Chemistry and Technology, 2004, 32(1): 4853.
[3] MILLER J A, BOWMAN C T. Mechanism and modeling of nitrogen chemistry in combustion [J]. Progress in Energy and Combustion Science, 1989, 15(4): 287338.
[4] SHIN Misoo, KIM Heysuk, JANG Dongsoon, et al. Numerical study on the SNCR application of spacelimited industrial boiler [J]. Applied Thermal Engineering, 2007, 27(17/18): 28502857.
[5] KIM Heysuk, SHIN Misoo, JANG Dongsoon, et al. Numerical study of SNCR application to a fullscale stoker incinerator at Daejon 4th industrial complex [J]. Applied Thermal Engineering, 2004, 24(14/15): 21172129.
[6] 范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1992: 9095.
[7] MAGUSSEN B F, HJERTAGER B H. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion [C]∥ Proceedings of 16th Symposium on Combustion. Pittsburgh: The Combustion Institute, 1976.
[8] 岑可法,姚强,骆仲泱,等.燃烧理论与污染控制[M].北京:机械工业出版社,2004: 435445.
[9] SOETE G G. Overall reaction rates of NO and N2 formation from fuel nitrogen [C]∥ Proceedings of 15th Symposium on Combustion. Pittsburgh: The Combustion Institute, 1975: 10931102.
[10] STBERG M, DAMJOHANSEN K, JOHNSSON J E. Influence of mixing on SNCR process [J]. Chemical Engineering Science, 1997, 52(25): 25112525.
[11] SMOOT L D, SMITH P J. Coal combustion and gasification [M]. New York: Plenum Press, 1985: 443.
[12] HOWARD J B, WILLIAM G C, FINE D H. Kinetics of carbon monoxide oxidation in postflame gases [C]∥ Proceedings of 14th Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1973: 975986.
[13] HAUTMAN A N, DRYER F L, SCHLUG K P, et al. A multiplestep overall kinetics mechanism for the oxidation of hydrocarbons [J]. Combustion Science and Technology, 1981, 25(5/6): 219235.
[14] YANG W H, PONZIO A, LUCAS C, et al. Performance analysis of a fixedbed biomass gasifier using hightemperature air [J]. Fuel Processing Technology, 2006, 87(3): 235245.
[15] BADZIOCH S, HAWKSLEY P G W. Kinetics of thermal decomposition of pulverized coal particles [J]. Industrial and Engineering Chemistry Process Design and Development, 1970, 9(4): 521530.
[16] ALZUETA M U, BILBAO R, MILLERA A, et al. Interaction between nitric oxide and urea under flow reactor condition [J]. Energy and Fuels, 1998, 12(5): 10011007.

No related articles found!