Please wait a minute...
J4  2010, Vol. 44 Issue (4): 728-731    DOI: 10.3785/j.issn.1008-973X.2010.04.018
方林聪, 汪国昭
浙江大学 数学系,浙江 杭州 310027
Radial basis functions based surface reconstruction algorithm
FANG Lincong, WANG Guozhao
Department of Mathematics, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML

针对基于传统径向基函数的数据插值方法在重建大量数据点云曲面时的困难,提出将数据点先分割再分别重建的方法.将点云的包围盒沿坐标轴分割,两两合并相邻的方块,使得方块相互重叠且覆盖整个包围盒.对每个包围盒内的点用径向基函数方法插值,利用窗口函数将每个函数限制在各小方盒内求和得到最终的整体插值曲面.借助MC(marching cubes)方法得到三角网格曲面.每个方块内点云的重建过程可以并行实现,因此该方法非常适用于对重建效率要求较高的场合.


Radial basis functions based data interpolation was introduced. Aiming at the problems of reconstruct surfaces from large data points, a method which partitioned point clouds and reconstructed separately was presented. After the bounding box of the point cloud is partitioned along axes, every two neighbors are united, such that the obtained boxes cover the whole bounding box. Radial basis functions are interpolated for the points in every small box, and an implicit function is obtained by summing all the functions restricted by window functions. Simplicial mesh is obtained by marching cubes. The method is very suitable to be applied to fast reconstruction system because it can reconstruct surfaces in small boxes in parallel.

出版日期: 2010-05-14
:  TP391.72  


通讯作者: 汪国昭,男,教授,博导.     E-mail:
作者简介: 方林聪(1982—),男,浙江温岭人,博士生,从事计算机图形学、计算机辅助几何设计方面的研究
E-mail Alert


方林聪, 汪国昭. 基于径向基函数的曲面重建算法[J]. J4, 2010, 44(4): 728-731.

FANG Lin-Cong, HONG Guo-Zhao. Radial basis functions based surface reconstruction algorithm. J4, 2010, 44(4): 728-731.


[1] BOISSONNAT J D. Geometric structures for threedimensional shape representation [J]. Transactions on Graphics, 1984, 3(4): 266286.
[2] AMENTA N, MARSHALL B, MANOLIC K. A new Voronoibased surface reconstruction algorithm [C]∥ Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. Orlando: ACM, 1998: 415421.
[3] DEY T K, GOSWAMI S. Tight Cocone: a watertight surface reconstructor [C]∥ Proceedings of the Symposium on Solid Modeling and Applications. Seattle: ACM, 2003: 127134.
[4] DONG Chenshi, WANG Guozhao. Surface reconstruction by offset surface filtering [J]. Journal of Zhejiang University: Science, 2005, 6A(Suppl.): 137143.
[5] CAZALS F, GIESEN J. Delaunay triangulation based surface reconstruction [M]∥ Effective Computational Geometry for Curves and Surfaces (Mathematics and Visualization). Berlin/Heidelberg: SpringerVerlag, 2006: 231276.
[6] CARR J C, BEATSON R K, CHERRIE J B, et al. Reconstruction and representation of 3D objects with radial basis functions [C]∥ Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. Los Angeles: ACM, 2001: 6776.
[7] GUENNEBAUD G, GROSS M. Algebraic point set surfaces [C]∥ Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. San Diego: ACM, 2007: 23.
[8] HOPPE H, DEROSE T, DUCHAMP T, et al. Surface reconstruction from unorganized points [C]∥ Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. Chicago: ACM, 1992: 7178.
[9] KAZHDAN M, BOLITHO M, HOPPE H. Poisson surface reconstruction [C]∥ Proceedings of Eurographics Symposium on Geometry Processing. Cagliari, Italy: [s.n.], 2006: 6170.
[10] LORENSEN W E, CLINE H E. Marching cubes: a high resolution 3D surface construction algorithm [J]. Computer Graphics, 1987, 21(4): 163169.

[1] 成敏, 王国瑾. 有理Bézier曲线的多项式逼近新方法[J]. J4, 2009, 43(6): 1020-1025.