Please wait a minute...
J4  2010, Vol. 44 Issue (4): 687-691    DOI: 10.3785/j.issn.1008-973X.2010.04.011
电子、通信与自动控制技术     
基于分层粒子滤波的地标检测与跟踪
谷雨, 李平, 韩波
浙江大学 工业控制技术研究所,浙江 杭州 310027
Landmark detection and tracking based on layered particle filter
GU Yu, LI Ping, HAN Bo
Institute of Industrial Process Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

针对直升机运动平台获得的地标图像序列高噪声且帧间位移大等难点,提出一种改进的局部二值模式向量,利用集成学习算法训练分类器区分地标模式和背景模式.采用分层粒子滤波算法有效地结合纹理和颜色2种特征,将地标检测与跟踪有机地融为一体.该算法首先选择似然值均值作为观测值,并利用均值漂移算法将粒子移到高似然值区域,然后选择颜色直方图作为观测,逐步将粒子移向高权重区域,最后通过聚类算法估计地标数目与位置.实验验证了该算法的有效性和鲁棒性.

Abstract:

To overcome high noise and large interframe displacement in landmark image sequences captured from a movinghelicopter platform, an improved local binary pattern descriptor was proposed to discriminate patterns of landmark and those of background using the classifier trained by the ensemble method. The layered particle filter is adopted to fuse the colorbased and texturebased features, and the detection and tracking are combined in a principled way. Likelihood mean is chosen as observations first, and particles are moved towards their local modes by mean shift in likelihood image. Color histogram is then used to sample particles with high weight gradually. Finally clustering algorithm is applied to estimate the number and positions of landmarks. Experiment on real image sequences demonstrated that the proposed algorithm is effective and robust.

出版日期: 2010-05-14
:  TP242.6  
基金资助:

国家“863”高技术研究发展计划资助项目(2006AA10Z204)

通讯作者: 李平,男,教授.     E-mail: pli@iipc.zju.edu.cn
作者简介: 谷雨(1982—),男,吉林长春人,博士生,从事机器人视觉导航与控制研究. E-mail: guyu@iipc.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

谷雨, 李平, 韩波. 基于分层粒子滤波的地标检测与跟踪[J]. J4, 2010, 44(4): 687-691.

GU Yu, LI Beng, HAN Bei. Landmark detection and tracking based on layered particle filter. J4, 2010, 44(4): 687-691.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.04.011        http://www.zjujournals.com/eng/CN/Y2010/V44/I4/687

[1] VALAVANIS K P. Advances in unmanned aerial vehicles: state of the art and the road to autonomy [M]. Dordrecht: Springer, 2007: 37.
[2] AMIDI O. An autonomous visionguided helicopter [D]. Pittsburgh: Carnegie Mellon University, 1996.
[3] AMIDI O, KANADE T, FUJITA K. A visual odometer for autonomous helicopter flight [J]. Robotics and Autonomous Systems, 1999, 28(2/3): 185193.
[4] SHAKERNIA O, MA Y, KOO T, et al. Landing an unmanned air vehicle: vision based motion estimation and nonlinear control [J]. Asian Journal of Control, 1999, 1(3): 128145.
[5] SHARP C S, SHAKERNIA O, SASTRY S S. A vision system for landing an unmanned aerial vehicle [C]∥ IEEE International Conference on Robotics and Automation. Seoul: IEEE, 2001: 17201727.
[6] SARIPALLI S, MONTGOMERY J F, SUKHATME G S. Visionbased autonomous landing of an unmanned aerial vehicle [C]∥ IEEE International Conference on Robotics and Automation. Washington, D.C.: IEEE, 2002: 27992804.
[7] GARCIAPARDO P J, SUKHATME G S, MONTGOMERY J F. Towards visionbased safe landing for an autonomous helicopter [J]. Robotics and Autonomous Systems, 2002, 38(1): 1929.
[8] KANADE T, AMIDI O, KE Q. Realtime and 3D vision for autonomous small and micro air vehicles [C]∥ Proceedings of the 43rd IEEE Conference on Decision and Control. Atlantis: IEEE, 2004: 16551662.
[9] AMIDI O, KANADE T, MILLER J R. Visionbased autonomous helicopter research at Carnegie Mellon Robotics Institute 1991—1997 [C]∥ International Conference on American Helicopter Society. Heli, Japan: [s.n.], 1998: 375386.
[10] REN Qinyuan, LI Ping, HAN Bo. Landmark recognition system for mini rotor aerial robot [C]∥ Proceedings of WCICA 2006. Dalian: IEEE, 2006: 1008310087.
[11] VERMA R C, SCHMID C, MIKOLAJCZYK K. Face detection and tracking in a video by propagating detection probabilities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 12151228.
[12] OKUMA K, TALEGHANI A, DE FREITAS N, et al. A boosted particle filter: multitarget detection and tracking [C]∥ Proceedings of European Conference on Computer Vision, Part 1. Berlin: Springer, 2004: 2839.
[13] CZYZ J, RISTIC B, MACQ B. A particle filter for joint detection and tracking of color objects [J]. Image and Vision Computing, 2007, 25(8): 12711281.
[14] COHEN I, MEDIONI G. Detecting and tracking moving objects for video surveillance [C]∥ Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Fort Collins: IEEE, 1999: 319325.
[15] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971987.
[16] BISHOP C M. Pattern recognition and machine learning (information science and statistics) [M]. New York: SpringerVerlag, 2006: 654662.
[17] AVIDAN S. Ensemble tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261271.
[18] FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm [C]∥ Proceedings of the Thirteenth International Conference on Machine Learning. Bari: [s.n.], 1996: 148156.
[19] BUHLMANN P, YU B. Boosting with the L2 loss: regression and classification [J]. Journal of the American Statistical Association, 2003, 98(462): 324339.
[20] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/nonGaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174188.
[21] PEREZ P, HUE C, VERMAAK J, et al. Colorbased probabilistic tracking [C]∥ Proceedings of European Conference on Computer Vision, Part 1. Berlin: Springer, 2002: 661675.
[22] VIOLA P, JONES M J. Robust realtime face detection [J]. International Journal of Computer Vision, 2004, 57(2): 137154.
[23] CHENG Y Z. Mean shift, mode seeking, and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790799.
[24] PEREZ P, VERMAAK J, BLAKE A. Data fusion for visual tracking with particles [J]. Proceedings of the IEEE, 2004, 92(3): 495513.

[1] 蒋荣欣, 张亮, 田翔, 陈耀武. 多机器人队形变换最优效率求解[J]. J4, 2010, 44(4): 722-727.