Please wait a minute...
J4  2010, Vol. 44 Issue (3): 528-532    DOI: 10.3785/j.issn.1008-973X.2010.03.021
电气工程     
悬臂梁单晶压电振子发电的理论建模与仿真
单小彪, 袁江波, 谢涛, 陈维山
哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨 150001
Modeling and simulation of power generation with piezoelectric unimorph cantilever
SHAN Xiaobiao, YUAN Jiangbo, XIE Tao, CHEN Weishan
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF  HTML
摘要:

为了解决电池为低功耗电子产品供能存在的诸多问题,对悬臂梁单晶压电振子的发电能力进行了研究.根据压电理论和热平衡原理,建立悬臂型单晶压电振子发电能力的数学模型,并对金属基板材料、基板厚度与压电片厚度对压电梁发电能力的影响进行了数值模拟与有限元仿真分析.研究结果表明,建立的数学模型与有限元仿真分析结果一致,压电片与基板材料存在一个最佳厚度比使得压电振子的输出电压达到最优,且最佳厚度比随着基板材料弹性模量的增大而增大,当基板材料分别为铝、磷青铜、多晶硅和钢时,单晶压电振子所对应的最佳厚度比分别为0.4、0.5、0.55和0.65,最后对以磷青铜为基板材料的压电振子进行了实验测试.实验结果表明,当压电片与基板厚度比为0.5时,压电振子输出功率最大,验证了理论分析的正确性.

Abstract:

The energygenerating capability of a piezoelectric unimorph cantilever was studied in order to supply the power of lowconsumption electric products. An analytical model of the piezoelectric unimorph cantilever was established by using the piezoelectric theory and heat balance principle. The effects of structural parameters as well as material properties of the piezoelectric cantilever on the energy generation were analyzed by numerical simulation and finite element analysis. The results obtained by the model were consistent with those from the finite element analysis. There are different optimal thickness ratios (ORT) of the thickness of piezoelectric layer to the thickness of metal layer for the piezoelectric unimorph cantilever to obtain the maximum electrical energy, and the ORT will increase with the increasing of the Young’s Modulus Ratio. When aluminum, phosphor bronze, silicon and steel plates are used for the substrate, the ORT is 0.4, 0.5, 0.55 and 0.65, respectively. The tests of the piezoelectric unimorph cantilever with the phosphor bronze were performed. The results show that the power of the piezoelectric unimorph cantilever reaches the maximum value when the ORT is 0.5. The experimental result demonstrates the validity of the theoretical analysis.

出版日期: 2012-03-20
:  TN3  
基金资助:

国家自然科学基金资助项目(50875057);哈尔滨工业大学科研创新基金资助项目(HIT.NSRIF.2008.50)

通讯作者: 谢涛,男,教授,博导.     E-mail: xietao@hit.edu.cn
作者简介: 单小彪(1977—),江西南城人,讲师,从事压电控制和航空航天运动模拟装备技术研究
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

单小彪, 袁江波, 谢涛, 陈维山. 悬臂梁单晶压电振子发电的理论建模与仿真[J]. J4, 2010, 44(3): 528-532.

CHAN Xiao-Biao, YUAN Jiang-Bei, XIE Chao, CHEN Wei-Shan. Modeling and simulation of power generation with piezoelectric unimorph cantilever. J4, 2010, 44(3): 528-532.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.03.021        http://www.zjujournals.com/eng/CN/Y2010/V44/I3/528

[1] GLYNNE J P, TUDORM J, BEEBY S P, et al. An electromagnetic vibrationpowered generator for intelligent sensor systems[J]. Sensors and Actuators A, 2004, 110: 344349.
[2] MITCHESON P D, MIAO P, STARK B H, et al. MEMS electrostatic micropower generator for low frequency operation[J]. Sensors and Actuators A, 2004, 115: 523529.
[3] SHENG W, K Wok, SUN L C, et al. Energy harvestingwith piezoelectric drum transducer [J]. Applie Physics Letters, 2007, 90(11): 113506.
[4] NG T H, LIAO W H. Sensitivity analysis and energy harvesting for selfpowered piezoelectric sensor[J].Journal of Intelligent Material Systems and Structures,2005,16(10): 785797.
[5] 曾平,刘艳涛,吴博达,等.一种新型压电式无线发射装置[J].吉林大学学报:工学版,2006, 36(增2): 7882.
ZENG Ping, LIU Xietao, WU Boda, et al. A novel wireless electropult powered by piezoelectricity[J]. Journal of Jilin Universily: Engineering and Technolony Edition, 2006,36(2): 7278.
[6] 程光明,庞建志,唐可洪,等.压电陶瓷发电能力测试系统的研制[J].吉林大学学报:工学版,2007, 37(2): 367371.
CHEN Guangming, PANG Jianzhi, TANG Kehong, et al. Development of measuring system for electricity generating capacity of piezoelectric ceramics[J]. Journal of Jilin Universily: Engineering and Technolony Edition, 2007, 37(2): 367371.
[7] 贺学锋,温志渝,温中泉,等.振动式压电发电机的理模型与实验[J].纳米技术与精密工程,2007, 5(4): 307310.
HE Xuefeng, WEN Zhiyu, WEN Zhongquan, et al.Mathematical model and experiment of vibratioir based piezoelectric generator[J]. Nanotechnology and Precision Engineering, 2007,5(4): 307310.
[8] NG T H, LIAO W H. Feasibility study of a selfpowered piezoelectric sensor[C]//Smart Electronics, MEMS, and BioMEMS, and Nanotechnology Conference. San Diego: SPIE, 2004: 377388
[9] 曲远方.功能陶瓷的物理性能[M].北京:化学工业出版社,2007.
[10] SMITS J G, CHO W S. The constituent equations of piezoelectric heterogeneous bimorphs[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1991, 38(3): 256270.
[11] 石胜君,陈维山,刘军考,等.一种基于纵弯夹心式换能器的直线超声电机[J].中国电机工程学报,2007, 27(18): 3035.
SHI Shengjun, CHEN Weishan, LIU Junkao,et al. Ultrasonic linear motor using longitudinal and bending multimode boltclamped langevin type transducer[J]. Proceedings of the CSEE, 2007, 27(18): 3035.
[12] LI Xia, CHEN Weishan, XIE Tao, et al. Novel high torque bearingless twosided rotary ultrasonic motor[J]. Journal of Zhejiang University: SCIENCE A, 2007, 8(5): 786792.
[13] 娄利飞,杨银堂,樊永祥,等.压电薄膜微传感器振动模态的仿真分析[J].振动与冲击, 2006, 25(4): 165168.
LOU Lifei, YANG Yintang, FAN Yongxiang, et al. Vibration modal analysis of piezoelectric thin film microsensor[J]. Journal of Vibration and Shock, 2006, 25(4): 165168.
[14] 郭彤,李江雄,柯映林.槽拔形压电复合换能器理论建模及有限元分析[J].浙江大学学报:工学版,2005,39(4): 569573.
GUO Tong, LI Jiangxiong, KE Yinglin. Finite element analysis and theoretical model of slotted cymbal composite piezoelectric transducer[J]. Journal of Zhejiang University: Engineering Science, 2005, 39(4): 569573.

No related articles found!