Please wait a minute...
J4  2010, Vol. 44 Issue (2): 403-407    DOI: 10.3785/j.issn.1008-973X.2010.02.035
一般工业技术     
单管传输特性的改进模型与实验研究
王波, 邱利民, 孙大明, 白昆, 刘钰
(浙江大学 制冷与低温研究所,浙江 杭州 310027)
Modified model for transmission characteristic of single tube and its experimental verification
WANG Bo, QIU Li-min, SUN Da-ming, BAI Kun, LIU Yu
(Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, Hangzhou 310027, China)
 全文: PDF  HTML
摘要:

为了描述单根圆形管道的传输特性,在流体网络理论的基础上,参考Rott的波动方程和Swift对紊流的修正方法,提出单管传输特性的改进模型.在模型中讨论了流动为紊流时的修正方法:当R/δv较小时,利用Swift的修正方法进行修正;当R/δv较大且修正因子n>1时,利用n对紊流进行进一步修正.为了对模型进行验证,以声压放大器这一典型的单管道为例开展了实验研究.紊流时在R/δv较小的情况下,改进模型和DeltaE的计算结果一致,与实验吻合良好;在R/δv较大的情况下,改进模型由于充分考虑了径向上的对流换热损失,其计算结果与DeltaE相比更加接近实验结果.

Abstract:

A modified model was proposed based on the fluid network theory, Rott’s wave equation, and Swift’s correction method for turbulence in order to describe the transmission characteristic of a single circular tube. The correction methods for turbulence were discussed. Swift’s correction method is used when R/δv is small, and further correction is made using factor n when R/δv is large and n>1. An acoustic amplifier was taken as example. The calculation results of the turbulence flow at small R/δv by the model and DeltaE agreed well with the experimental results. When the flow was turbulent at large R/δv, the results of the model were closer to the experimental results than DeltaE because the model considered convective heat transfer loss in radical direction.

出版日期: 2010-03-09
:  TB 68  
基金资助:

国家自然科学基金资助项目(E50825601);教育部新世纪人才计划资助项目(NCET-06-0521).

通讯作者: 邱利民,男,教授.     E-mail: limin.qiu@zju.edu.cn
作者简介: 王波(1982—),男,云南会泽人,博士生,从事热声发动机研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王波, 邱利民, 孙大明, 等. 单管传输特性的改进模型与实验研究[J]. J4, 2010, 44(2): 403-407.

WANG Bei, QIU Li-Min, SUN Da-Meng, et al. Modified model for transmission characteristic of single tube and its experimental verification. J4, 2010, 44(2): 403-407.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.02.035        http://www.zjujournals.com/eng/CN/Y2010/V44/I2/403

[1]  BACKHAUS S, SWIFT G W.A thermoacoustic stirling heat engine [J].Nature,1999,399: 335338.
[2] 罗二仓,胡剑英,戴巍,等.一种大幅度提高热声发动机压比的声学泵[J].科学通报,2005,50(17):19261928.
LUO Er-cang, HU Jian-ying, DAI Wei, et al. An acoustic amplifier capable of remarkably increasing pressure ratio of thermoacoustic engine [J]. Chinese Science Bulletin,2005,50(17):19261928.
[3] SUN Da-ming, QIU Li-min, WANG Bo, et al. Transmission characteristics of acoustic amplifier in thermoacoustic Engine [J]. Energy Conversion and Management,2008,49∶913918.
[4] BAO Rui, CHEN Guo-bang, TANG Ke, et al. Thermoacoustically driven pulse tube refrigeration below 80 K by introdcing an acoustic pressure amplifier [J]. Applied Physics Letters, 2006,89: 21191512119152.
[5] WARD W C, SWIFT G W. Design environment for low amplitude thermoacoustic engines[J].Journal of the Acoustical Society of America, 1994, 95(6): 36713672. [6] DAI Wei, HU Jian-ying, LUO Er-cang. Comparison of two different ways of using inertance tube in a pulse tube cooler [J]. Cryogenics, 2006,46: 273277.
[7] LUO Er-cang, RADEBAUGH R, LEWIS M. Inertance tube models and their experiment verification [C]//Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference-CEC. [S. l.]: American Institute of Physics, 2004,49: 14851492.
[8] 罗志昌.流体网络理论[M].北京:机械工业出版社,1988: 114121.
[9] ROTT N. Damped and thermally driven acoustic oscillations in wide and narrow tubes [J]. Zeitschrift fur Angewandte Mathematik und Physik, 1969, 20(2): 230243.
[10] SWIFT G W. Thermoacoustics: a unifying perspective for some engines and refrigerators [M]. 5th ed. Los Alamos: [s. n.], 2001: 173175.
[11] GOODSON R E, LEONARD R G. A survey of modeling techniques for fluid line transients [J]. Journal of Basic Engineering, 1972, 94(2): 474482.
[12] KIRSHNER J M. Fluid amplifiers [M]. New York: McGraw-Hill, 1966: 152175.
[13] KIRSHNER J M, KATZ S. Design theory of fluidic components [M]. New York: Academic Press, 1975: 7882.
[14] IGUCHI M, OHMI M, MAEGAWA K. Analysis of free oscillating flow in a U-shaped tube [J]. Bull JSME, 1982, 25(9): 13981405.
[15] 王勇,阮奇.计算管内湍动流体摩擦因数的显式新方程[J].中国工程科学,2006,8(6): 8388.
WANG Yong,RUAN Qi. A new explicit equation for calculating the friction factor for the turbulent flow in pipes [J]. Engineering Science, 2006, 8(6): 8388.
[16] LIU J, GARRETT S L. Relationship between Nusselt number and the thermoviscous (Rott) functions [J]. Journal of the Acoustical Society of America, 2006, 119(3): 14571462.
[17] 邱利民,孙大明,张武.大型多功能热声发动机的研制及初步实验第一部分:热声发动机的研制[J].低温工程,2003(2):17.
QIU Li-min, SUN Da-ming, ZHANG Wu, et al. Study of a large-scale multi-function thermoacoustic heat engine with high efficiency Part I: design and construction of the engine[J]. Cryogenic Engineering, 2003(2): 17.

No related articles found!