Please wait a minute...
J4  2010, Vol. 44 Issue (2): 349-352    DOI: 10.3785/j.issn.1008-973X.2010.02.025
化学工程﹑环境工程     
驯化的西湖底泥还原腐殖质影响因素研究
徐志伟, 陈红
(浙江大学 环境工程研究所, 浙江 杭州 310027)
Influence factors of humus reduction by acclimated sediments of West Lake
XU Zhi-wei, CHEN Hong
(Institute of Environment Engineering, Zhejiang University, Hangzhou 310027, China)
 全文: PDF  HTML
摘要:

利用驯化的西湖底泥,以蒽醌-2,6-双磺酸盐(AQDS)作为腐殖质模式物,初步研究了温度、pH、不同类型氮源、不同种类金属离子等对底泥微生物还原腐殖质的影响.结果发现,在15~45 ℃下驯化底泥能还原腐殖质,最适反应温度为30~37 ℃;在反应初始pH为4~9的条件下可进行腐殖质还原,最适pH为7;不同类型氮源对微生物还原腐殖质的效果依次为NH4Cl>CO(NH2)2>NaNO3>NaNO2;Mg2+、Mn2+促进了微生物还原腐殖质,而Zn2+、Ni2+、Cu2+部分地抑制了腐殖质还原,Hg2+则完全抑制腐殖质还原.

Abstract:

By using acclimated sediments of West Lake, the effects of temperature, pH, different nitrogen sources, and different metal ions on humus microbial reduction were preliminarily analyzed with anthraquinone-2,6-disulfonate (AQDS) as humus model compound. Experimental results show that acclimated sediments can reduce humus during 15~45 ℃ and the optimum temperature is 30~37 ℃. Humus reduction was occurred at initiative pH 4~9, and the optimum pH is 7. The degree of humus reductive activities caused by different nitrogen sources is NH4Cl> CO(NH2)2> NaNO3> NaNO2. Mg2+、Mn2+ enhanced humus microbial reduction, but Zn2+、Ni2+、Cu2+ showed partial inhibition for humus reduction, and Hg2+ completely inhibited humus reduction.

出版日期: 2010-03-09
:  X 17  
基金资助:

国家水体污染控制与治理科技重大资助项目(2008ZX07101-006-08);浙江省科技厅资助项目(2008C23100).

通讯作者: 陈红,女,副教授.     E-mail: chen_hong@zju.edu.cn
作者简介: 徐志伟(1983—),男,湖南益阳人,硕士生,从事废水、废物生物处理研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐志伟, 陈红. 驯化的西湖底泥还原腐殖质影响因素研究[J]. J4, 2010, 44(2): 349-352.

XU Zhi-Wei, CHEN Gong. Influence factors of humus reduction by acclimated sediments of West Lake. J4, 2010, 44(2): 349-352.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.02.025        http://www.zjujournals.com/eng/CN/Y2010/V44/I2/349

[1]  STEVENSON F J. Humus chemistry: genesis, composition, reactions [M].2nd ed. New York: Wiley, 1994: 195.
[2] LOVLEY D R, COATES J D. Humic substances as electron acceptors for microbial respiration [J]. Nature, 1996, 382: 445448.
[3] 方连峰,王竞,周集体,等.醌化合物强化偶氮染料的生物脱色[J].中国环境科学.2007,27(2):174178.
FANG Lian-feng, WANG Jing, ZHOU Ji-ti, et al. Biological decolourzation quinone compound enhancing azo dyes [J]. China Environmental Science, 2007, 27(2): 174178.
[4] THOMAS B, WILLIAM P I, JACE A H, et al. Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium[J]. Environmental Science and Technology, 2005, 39(18): 71267133.
[5] BHUSHAN B, HALASZ A, HAWARI J. Effect of iron (Ⅲ), humus acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2.B[J]. Journal of Applied Microbiology, 2006, 100(3): 555563.
[6] FREDRICKSON J K, KOSTANDARITHES H M, LI S W, et al. Reduction of Fe(Ⅲ), Cr(Ⅵ), U(Ⅵ), and Tc(Ⅶ) by Deinococcus radiodurans R1[J]. Applied Environmental Microbiology, 2000, 66(5): 20062011.
[7] 许志诚,洪义国,罗微,等.中国希瓦氏菌D14T的厌氧腐殖质呼吸[J].微生物学报,2006,46(6): 973978.
XU Zhi-cheng, HONG Yi-guo, LUO Wei, et al. Anaerobic humus respiration by Shewanella cinica D14T [J].Acta Microbiologica Sinica, 2006, 46(6):  973978.
[8] SANTOS A B, BISSCHOPS I A E, CERVANTES F J, et al. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30 ℃) and thermophilic (55 ℃) treatments for decolourisation of textile wastewaters[J]. Chemosphere, 2004, 55(9): 11491157.
[9] CERVANTES F J, VAN DER VELDE S, LETTINGA G, et al. Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds[J]. Biodegradation, 2000, 11(5): 313321.
[10] BRADLEY P M, CHAPELLE F H, LOVLEY D R. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene[J]. Applied Environmental Microbiology, 1998, 64(8):31023105.
[11] COATES J D, ELLIS D J, RODEN E, et al. Recovery of humics-reducing bacteria from a diversity of sedimentary environments[J]. Applied Environmental Microbiology, 1998, 64(4):15041509.
[12] CERVANTES F J, VAN DER VELDE S, LETTINGA G, et al. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia[J]. FEMS Microbiology Ecology, 2000, 34(2): 161171.
[13] CERVANTES F J, GUTIRREZ C H, LPEZ K Y, et al. Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions[J]. Biodegradation, 2008, 19(2): 235246.
[14]LOVLEY D R, KASHEFI K, VARGAS M, et al. Reduction of humic substances and Fe (Ⅲ) by hyperthermophilic microorganisms[J]. Chemical Geology, 2000, 169(9): 289298.
[15] GILLER K E, WITTER E, MC GRATH S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review[J]. Soil Biology and Biochemistry, 1998, 30 (1011): 13891414.
[16] VICTOR M F, MARIA L R, PRESENTACION R, et al. Inhibition of Desuvovibrio gigas hydrogenase with copper salts and other metalions[J]. European Journal of Biochemistry, 1989, 185(2): 449454.
[17] 王家玲,李顺鹏,黄正.环境微生物学[M].北京:高等教育出版社,2004: 96.

No related articles found!