Please wait a minute...
J4  2010, Vol. 44 Issue (2): 232-236    DOI: 10.3785/j.issn.1008-973X.2010.02.004
计算机技术﹑电信技术     
中立型不确定时滞系统的鲁棒稳定性
钱伟1,2, 沈国江1, 孙优贤1
(1.浙江大学 工业控制技术国家重点实验室,浙江 杭州310027; 2.河南理工大学 电气工程与自动化学院,河南 焦作454000)
Robust stability for uncertain neutral systems with mixed delays
QIAN Wei1,2, SHEN Guo-jiang1, SUN You-xian1
(1. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China;
2. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China)
 全文: PDF  HTML
摘要:

研究中立型不确定时滞系统的鲁棒稳定性问题.系统的不确定性分为非线性不确定性和范数有界不确定性两种情况,构造一个新的Lyapunov-Krasovskii泛函并利用积分不等式对其正定性进行了证明,从而放松了对某些泛函参数的约束;利用Lyapunov方法,基于线性矩阵不等式的形式,分别得到在两种不确定性情况下系统的鲁棒稳定性判据,所得的判据与中立型时滞及离散时滞均相关,从而克服了中立型时滞无关所导致的结论的保守性.通过数值算例表明,所得到的稳定性判据在保守性上优于现存的一些方法.

Abstract:

The robust stability for neutral systems with mixed delays and uncertainties was investigated. The uncertainties under consideration were nonlinear perturbations and norm-bounded uncertainties, respectively. A novel Lyapunov-Krasovskii functional was constructed and its positive definiteness was proved by using integral inequality, whichrelaxed the constraint on some functional parameters. The neutral-delay-dependent and discrete-delay-dependent stability criteria for two different forms of uncertainty were derived by using Lyapunov method in terms of linear matrix inequalities. Then the conservatism caused by neutral-delay-independence was relaxed. The numerical examples weregiven to illustrate the effectiveness of the method and the improvement over some existing methods.

出版日期: 2010-03-09
:  TP 273  
基金资助:

国家“863”高技术研究发展计划资助项目(2007AA11Z216);国家自然科学基金资助项目(50708094);河南省高等学校控制工程重点学科开放实验室资助项目(KG2009-07);河南省教育厅自然科学研究计划资助项目(2008B510008).

通讯作者: 沈国江,男,博士后.     E-mail: gjshen@iipc.zju.edu.cn
作者简介: 钱伟(1978-),男,河南焦作人,博士生,从事时滞系统稳定性的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

钱伟, 沈国江, 孙优贤. 中立型不确定时滞系统的鲁棒稳定性[J]. J4, 2010, 44(2): 232-236.

JIAN Wei, CHEN Guo-Jiang, SUN You-Xian. Robust stability for uncertain neutral systems with mixed delays. J4, 2010, 44(2): 232-236.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.02.004        http://www.zjujournals.com/eng/CN/Y2010/V44/I2/232

[1] HALE J K. Theory of functional differential equations [M]. New York: Springer, 1977.
[2] NICULESCU S I. Delay effects on stability: a robust control approach [M]. Berlin: Springer, 2001.
[3] KOLMANOVSKII V B, MYSHKIS A. Applied theory of functional differential equations [M]. Boston: Kluwer Academic Publishers, 1992.
[4] HAN Q L. A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays [J]. Automatica, 2004, 40(10): 17911796.
[5] PARK J H, KWON O. On new stability criterion for delay differential systems of neutral type [J]. Applied Mathematics and Computation, 2005, 162(2): 627-637.
[6] WU M, HE Y, SHE J H. New delay-dependent stability criteria and stabilizing method for neutral systems [J]. IEEE Transactions on Automatic Control, 2004, 46(12):2266-2270.
[7] HE Y, WU M, SHE J H, et al. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays [J]. Systems and Control Letters, 2004, 51(1):57-65.
[8] ZHANG W A, YU L. Delay-dependent robust stability of neutral systems with mixed delays and nonlinear perturbations [J]. Acta Automatica Sinica, 2007, 33(8): 863-866.
[9] HAN Q L, YU L. Robust stability of linear neutral systems with nonlinear parameter perturbations [J]. IEE Proceedings of Control Theory and Applications, 2004, 151(5):539-546.
[10] GU K. An integral inequality in the stability problem of time-delay systems [C]// Proceedings of 39th IEEE Conference on Decision and Control. Sydney: [s. n.], 2000:2805-2810.
[11] XIE L. Output feedback H control of systems with parameter uncertainty [J]. International Journal of Control, 1996, 63(1): 741-750.
[12] XU S Y, LAM J. Improved delay-dependent stability criteria for time-delay systems [J]. IEEE Transaction on Automatic Control, 2005, 50(3): 2266-2270.
[13] CAO J, WANG J. Delay-dependent robust stability of uncertain nonlinear systems with time delay [J]. Applied Mathematics and Computations, 2004, 154: 289-297.
[14] KWON O, PARK J H. Matrix inequality approach to a novel stability criterion for time-delay systems with nonlinear uncertainties [J]. Journal of Optimization Theory andApplications, 2005, 126: 643-656.
[15] PARK J H, KWON O. Novel stability criterion of time delay systems with nonlinear uncertainties [J]. Applied Mathematics Letters, 2005, 18: 683-688.
[16] FRIDMAN E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems [J]. Systems and Control Letters, 2001, 43(4): 309-319.

[1] 程森林,李雷,朱保卫,柴毅. WSN定位中的RSSI概率质心计算方法[J]. J4, 2014, 48(1): 100-104.
[2] 方强, 陈利鹏, 费少华, 梁青霄, 李卫平, 赵金锋. 定位器模型参考自适应控制系统设计[J]. J4, 2013, 47(12): 2234-2242.
[3] 罗继亮, 王飞,邵辉,赵良煦. 基于约束转换的Petri网最优监控器设计[J]. J4, 2013, 47(11): 2051-2056.
[4] 任雯, 胥布工. 基于FI-SNAPID算法的经编机多速电子送经系统开发[J]. J4, 2013, 47(10): 1712-1721.
[5] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[6] 孟德远,陶国良,钱鹏飞,班伟. 气动力伺服系统的自适应鲁棒控制[J]. J4, 2013, 47(9): 1611-1619.
[7] 叶凌云,陈波,张建,宋开臣. 基于最少拍无波纹算法的高精度动态标准源反馈控制[J]. J4, 2013, 47(9): 1554-1558.
[8] 叶凌箭,马修水. 基于软测量技术的化工过程优化控制策略[J]. J4, 2013, 47(7): 1253-1257.
[9] 黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. J4, 2013, 47(5): 831-836.
[10] 贺乃宝, 高倩, 徐启华, 姜长生. 基于自适应观测器的飞行器抗干扰控制[J]. J4, 2013, 47(4): 650-655.
[11] 朱予辰,冯冬芹,褚健. 基于EPA的块数据流通信调度与控制[J]. J4, 2012, 46(11): 2097-2102.
[12] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[13] 朱康武, 顾临怡, 马新军, 胥本涛. 水下运载器多变量鲁棒输出反馈控制方法[J]. J4, 2012, 46(8): 1397-1406.
[14] 费少华,方强,孟祥磊,柯映林. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. J4, 2012, 46(7): 1157-1161.
[15] 于晓明, 蒋静坪. 基于神经网络延时预测的自适应网络控制系统[J]. J4, 2012, 46(2): 194-198.