Please wait a minute...
J4  2009, Vol. 43 Issue (10): 1812-1817    DOI: 10.3785/j.issn.1008-973X.2009.10.012
工业工程与制造业信息化     
信息节点分段寻优法在车间生产调度中的应用
何正为, 唐任仲
(浙江大学 现代制造工程研究所,浙江省先进制造技术重点研究实验室,浙江 杭州 310027)
Application of information node period search method to job-shop schedulingHE
Zheng-wei, TANG Ren-zhong
(Institute of Manufacturing Engineering, Zhejiang Province Key Laboratory of Advanced Manufacturing Technology,  Zhejiang University, Hangzhou 310027,China)
 全文: PDF(1298 KB)   HTML
摘要:

为了解决当前离散制造企业车间生产系统作业计划与调度条理不清晰的问题,提出了一种信息节点分段寻优的生产调度方法.通过分析车间现场各生产要素的特征,把相关联的特征信息抽象成信息节点.应用信息节点描述生产过程,根据资源竞争的特点将整个生产过程划分为不同的阶段.在每个阶段,对相互影响、相互制约的信息节点进行组合优化,寻找到阶段性最优,直到生产过程结束,得到生产调度的最优解.信息节点分段寻优法的优点在于极大地降低调度问题的复杂程度,提高可计算性,在信息节点动态变动时,能快速得到最优调度方案.应用实例表明,信息节点分段寻优法是一种实用的动态生产调度方法,能较好地满足实际生产调度的需要.

Abstract:

Dynamic production scheduling method based on information node period search method (INPSM) was put forward to solve the chaos state of production scheduling in discrete manufacturing enterprises. The features of manufacturing elements in the production line were analyzed, and the information node was abstracted with the correlative features. The production process was described with the information node, and the whole production process was defined with several periods according to the features of resources competition. During each individual period, the interactive information nodes were scheduled to get the optimum scheduling. The globally optimal solution of production scheduling was achieved till the production process was completed. The complexity of scheduling can be reduced and the computability can be improved with INPSM. The optimum scheduling strategy can be rapidly obtained when the information nodes change dynamically. Application results prove that the INPSM can satisfy the actual requirement of production scheduling.

出版日期: 2009-11-29
:  TH 186  
基金资助:

国家自然科学基金资助项目(50675201).

通讯作者: 唐任仲,男,教授,博导.     E-mail: tangrz@zju.edu.cn
作者简介: 何正为(1977-),男,湖北武汉人,博士生,主要从事制造企业生产现场实时数据采集分析与生产调度优化的研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

何正为, 唐任仲. 信息节点分段寻优法在车间生产调度中的应用[J]. J4, 2009, 43(10): 1812-1817.

HE Zheng-Wei, TANG Lin-Zhong. Application of information node period search method to job-shop schedulingHE. J4, 2009, 43(10): 1812-1817.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.10.012        http://www.zjujournals.com/eng/CN/Y2009/V43/I10/1812

[1] PANWALKER S S, ISKANDER W. Survey of scheduling rules [J]. Operations Research, 1977, 25(1): 4561.
[2] TADAO M. Petri nets: properties, analysis and applications[J].Proceedings of the IEEE,1989,77(4): 541580.
[3] HOLLAND J H. Adaption in natural and artificial system[M]. Michigan :Michigan University Press, 1975.
[4] WILLEMS T M, ROODA J E. Neural networks for job-shop scheduling[J]. Control Engineering Practices, 1994, 2(1): 3139.
[5] FISHER H, THOMPSON G L. Probabilistic learning combinations of local job-shop scheduling rules[M]. Englewood Cliffs, NJ:Prentice-Hall, 1963:225251.

[1] 何正为, 唐任仲. 工序的时间波动在离散制造过程中的传播机理[J]. J4, 2014, 48(3): 445-450.