Please wait a minute...
J4  2009, Vol. 43 Issue (5): 957-961    DOI: 10.3785/j.issn.1008-973X.2009.05.033
材料与化学工程     
多孔低介电常数材料研究进展
王家邦,张国权
(浙江大学 材料科学与工程学系,浙江 杭州 310027)
Research progress of porous materials with low dielectric constant
WANG Jia-bang, ZHANG Guo-quan
(Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(699 KB)   HTML
摘要:

摘要: 具有低介电常数的多孔材料适合于集成电路方面的应用.从组成与结构、制备方法和介电性能等方面,分别介绍了以无机材料、有机材料、无机/有机复合相为基体的多孔低介电常数材料,其介电常数分别可以降低至1.99、1.50、1.99.以有机材料为基体的多孔低介电常数材料的使用温度达到450 ℃;以无机材料为基体的多孔低介电常数材料的抗弯强度达到136 MPa.在获得低介电常数的同时,改善材料由于引入孔隙导致的材料力学性能下降、介电损耗升高等问题,可以进一步拓展材料的应用空间.

Abstract:

The porous materials with low dielectric constant are suitable for the applications in integrated circuits. From the aspects of composition and structure, preparation method and dielectric properties, this work introduced the porous low-dielectric-constant materials with different matrix such as inorganic materials, organic materials, inorganic and organic composite separately, whose dielectric constants can be reduced to 1.99, 1.50, 1.99, respectively. The using temperature of the porous low-dielectric-constant materials with organic matrix can reach 450 ℃. The flexural strength of the porous low-dielectric-constant materials with inorganic matrix can reach 136 MPa. The introduction of cave into the materials leads to the decrease of mechanical properties and the increase of dielectric loss. The effort to get a low-dielectric-constant and improve the above properties can broaden the application scope of the porous materials.

出版日期: 2009-11-18
:  TN04  
作者简介: 学学报(工学版)网址: www.journals.zju.edu.cn/eng作者简介: 王家邦(1950-),男,浙江宁海人,副教授,从事功能陶瓷研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王家邦, 张国权. 多孔低介电常数材料研究进展[J]. J4, 2009, 43(5): 957-961.

WANG Jia-Bang, ZHANG Guo-Quan. Research progress of porous materials with low dielectric constant. J4, 2009, 43(5): 957-961.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.05.033        http://www.zjujournals.com/eng/CN/Y2009/V43/I5/957

[1] MAEX K, BAKLANOY M R, SHAMIRYAN D, et al. Low dielectric constant materials for microelectronics [J]. Journal of Applied Physics, 2003, 93(11): 87938841.
[2] HONG J K, KIM H R. The effect of sol viscosity on the sol-gel derived low density SiO2 xerogel film for intermetal dielectric application [J]. Thin Solid Films, 1998, 332(1/2): 449454.
[3] KIM J H, JUNG S B, PARK H H, et al. The effects of pre-aging and concentration of surface modifying agent on the microstructure and dielectric properties of SiO2 xerogel film [J]. Thin Solid Films, 2000, 377/378: 467472.
[4] SHEN J, LUO A,YAO L F, et al. Low dielectric constant silica films with ordered nanoporous structure [J]. Materials Science and Engineering C, 2007, 27(5-8): 11451148.
[5] FARRELL R A, CHERKAOUI K, PETKOY N, et al. Physical and electrical properties of low delectric constant self-assembled mesoporous silica thin films [J]. Microelectronics Reliability, 2007, 47(4/5): 759763.
[6] UCHIDA Y, HISHIYA S, FUJII N, et al. Effect of moisture adsorption on the properties of porous-silica ultralow-k films [J]. Microelectronic Engineering, 2006, 83(11/12): 21262129.
[7] LUO J T, WU W F, WEN H C, et al. The roles of hydrophobic group on the surface of ultralow dielectric constant porous silica film during thermal treatment [J]. Thin Solid Films, 2007, 515(18-25): 72757280.
[8] CHANG S Y, HUANG Y C. Analyses of interface adhesion between porous SiO2 low-k film and SiC/SiN layers by nanoindentation and nanoscratch tests [J]. Microelectronic Engineering, 2007, 84(2): 319327.
[9] CHANG S Y, HUANG Y C. Effect of plasma treatments on interface chemistru and adhesion strength between porous SiO2 low-k film and SiC/SiN layers [J]. Microelectronic Engineering, 2008, 85(2): 332338.
[10] DING S Q, ZENG Y P, JIANG D L. Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant [J]. Materials Letters, 2007, 61(11/12): 22772280.
[11] HAN G F, ZHANG L T, CHENG L F. Processing and performance of 2D fused-silica fiber reinforced porous Si3N4 matrix composites [J]. Journal of University of Science and Technology, 2008, 15(1): 5861.
[12] JOSHI S, KEN-ICHI K, HITOSHI O, et al. Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process [J]. Journal of the European Ceramic Society, 2007, 27(8/9): 31053108.
[13] BOEY F Y C, TOK A I Y. Porous AlN ceramic substrates by reaction sintering [J]. Journal of Materials Processing Technology, 2003, 140(1-3): 413419.
[14] LAZAROUK S, KATSOUBA S, PONOMAR V, et al. Reliability of built in aluminum interconnection with low-ε dielectric based on porous anodic alumina [J]. Solid-State Electronics, 2000, 44(5): 815818.
[15] LAZAROUK S, KATSOUBA S, LESHOK A, et al. Porous alumina as low-ε insulator for multilevel metallization [J]. Microelectronic Engineering, 2000, 50(1-4): 321327.
[16] JIANG L Z, LIU J G, LI H Q, et al. A methodology for the preparation of nanoporous polyimide films with low dielectric constants [J]. Thin Solid Films, 2006, 510(1/2): 241246.
[17] LEE Y J, HUANG J M, KUO S W, et al. Low- dielectric nanoporous polyimide films prepared from PEO-POSS nanoparticles [J]. Polymer, 2005, 46(23): 1005610065.
[18] ZHANG H, ZHOU J, ZHANG X L, et al. High density polyethylene-grafted-maleic anhydride low-k porous films prepared via thermally induced phase separation [J]. European Polymer Journal, 2008, 44(4): 10951101.
[19] SHARANGPANI R,  SINGH R,  DREWS M, et al.Chemical vapor deposition and characterization of amorphous Teflon fluoropolymerthin films [J]. Journal of Electronic Materials, 1997, 26(4): 402409.
[20] DING J D, WANG P F, WAN X G, et al. Effects of thermal treatment on porous amorphous fluoropolymer film with a low dielectric constant [J]. Materials Science and Engineering, 2001, 83(1-3): 130136.
[21] WANG J H, LIU P T, CHANG T S, et al. Structural characteristics and interfacial reactions of low dielectric constant porous polysilazane for Cu metallization [J]. Thin Solid Films, 2004, 469/470: 393397.
[22] CHANG T C, LIU P T, CHEN C W, et al. CMP of ultra low-k material porous-polysilazane (PPSZ) for interconnect applications[J].Thin Solid Films, 2004,447/448: 524530.
[23] CHANG T C, TSAI T M, LIU P T, et al. Study on the effect of electron beam curing on low-K porous organosilicate glass (OSG) materials [J]. Thin Solid Films, 2004, 469/470: 383387.
[24] JOUSSEAUNE V, FAVENNEC L, ZENASNI A, et al. Porous ultra low k deposited by PECVD: from deposition to material properties [J]. Surface & Coatings Technology, 2007, 201(22/23): 92489251.
[25] YU S Z, TERENCE K S, WONG X H, et al. Synthesis and characterization of porous silsesquioxane dielectric films [J]. Thin Solid Films, 2005, 473(2): 191195.
[26] YU S Z, TERENCE K S, WEI J, et al. Structural, electrical and mechanical properties of templated silsesquioxane porous films [J]. Microelectronic Engineering, 2005, 77(2): 125131.
[27] VALENTINOTTI M, WALTER S, MODENA S, et al. Low dielectric constant porous BN/SiCO made by pyrolysis of filled gels [J]. Journal of the European Ceramine Society, 2007, 27(6): 25292533.
[28] LARLUS O, MINTOVA S, JEAN B, et al. Silicalite-1/polymer films with low-k dielectric constants [J]. Applied Surface Science, 2004, 226(1-3): 155160.
[29] MOSIG K, JACOBS T, BRENNAN K, et al. Integration challenges of porous ultra low-k spin-on delectrics [J]. Microelectronic Engineering, 2002, 64(1-4): 1124

No related articles found!