Please wait a minute...
浙江大学学报(工学版)
交通工程、土木工程     
结构体系可靠度分析的改进支持向量回归
刘扬1,鲁乃唯1,2,蒋友宝1
1. 长沙理工大学 土木与建筑学院,湖南 长沙 410114; 2.东南大学 土木工程学院,江苏 南京 210096
Adaptive support vector regression method for structural system reliability analysis
LIU Yang1 , LU Nai wei1,2, JIANG You bao1
1. School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China;2. School of Civil Engineering, Southeast University, Nanjing 210096, China
 全文: PDF(1197 KB)   HTML
摘要:

针对结构体系可靠度分析的关键问题,在传统支持向量回归方法(SVR)的基础上引入2个支持向量更新步骤,提出适用于结构体系可靠度分析的改进支持向量回归(ASVR)方法.将传统SVR与遗传算法(GA)结合搜索关键构件功能函数的验算点,采用重要抽样Monte Carlo模拟得出构件的失效概率.基于β约界法筛选潜在的失效构件,根据变化的有限元模型再次更新SVR模型.基于上述2个更新步骤,改进传统构件可靠度分析的SVR算法并用于结构体系可靠度分析.数值算例分析表明该算法的计算效率与精确性,斜拉桥的算例分析证实该算法在实际工程结构中的适用性,同时得到该斜拉桥的2条主要失效路径.

Abstract:

Two updating processes of support vectors were introduced into the traditional support vector regression (SVR) method for the purpose of presenting a new adaptive support vector regression (ASVR) method, in order to solve the key issues of structural system reliability assessment. Importance sampling Monte Carlo simulation (MCS) was used to estimate structural reliability after searching the checking point of key components functions based on traditional SVR and genetic algorithm (GA). Screen the potential failure components using the β bound method, and update the SVR models according to the updated finite element models. With the two updating processes, the traditional SVR was improved and applied to structural system reliability analysis. Numerical examples were given to illustrate the accuracy and efficiency of the proposed method. The numerical analysis of cable stayed bridge demonstrates the applicability of ASVR method in the practical engineering structures. Meanwhile, two main failure sequences of the cable stayed bridge were deduced.

出版日期: 2015-10-15
:  TU 311.4  
基金资助:

国家“973”重点基础研究发展规划资助项目 (2015CB057700);国家自然科学基金资助项目(51378081, 51108045, 11102029).

通讯作者: 鲁乃唯,男,博士后.ORCID: 0000 0003 3812 0385.     E-mail: lunaiweide@163.com
作者简介: 刘扬(1973-),男,教授, 博士.ORCID: 0000 0001 8683 9015. E-mail: liuyangbridge@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘扬,鲁乃唯,蒋友宝. 结构体系可靠度分析的改进支持向量回归[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.09.011.

LIU Yang, LU Nai wei, JIANG You bao. Adaptive support vector regression method for structural system reliability analysis. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.09.011.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.09.011        http://www.zjujournals.com/eng/CN/Y2015/V49/I9/1692

[1] THOFT CHRISTENSEN P, MUROTSU Y. Application of structural systems reliability theory [M]. New York: Springer Science and Business Media, 2012.
[2] LEE Y J, SONG J. Finite element based system reliability analysis of fatigue induced sequential failures [J]. Reliability Engineering and System Safety, 2012, 108: 131-141.
[3] GOMES H M, AWRUCH A M. Comparison of response surface and neural network with other methods for structural reliability analysis [J]. Structural Safety, 2004, 26(1): 49-67.
[4] ROCCO C M, MORENO J A. Fast Monte Carlo reliability evaluation using support vector machine [J]. Reliability Engineering and System Safety, 2002, 76(3): 237-243.
[5] HURTADO J E, ALVAREZ D A. Classification approach for reliability analysis with stochastic finite element modeling [J]. Journal of Structural Engineering, 2003, 129(8): 1141-1149.
[6] CHEN K Y. Forecasting systems reliability based on support vector regression with genetic algorithms [J]. Reliability Engineering and System Safety, 2007, 92(4): 423432.
[7] 金伟良, 袁雪霞. 基于 LS—SVM 的结构可靠度响应面分析方法[J]. 浙江大学学报: 工学版, 2007, 41(1): 44-47.
JIN Wei liang, YUAN Xue xia. Response surface method based on LS SVM for structural reliability analysis [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(1): 44-47.
[8] VAPNIK V. The nature of statistical learning theory [M]. Berlin: Springer, 2000.
[9] SCHOLKOPF B, SMOLA A J. Learning with kernels: support vector machines, regularization, optimization, and beyond [M]. Massachusetts: MIT, 2001.
[10] MOURA M C, ZIO E, LINS I D, et al. Failure and reliability prediction by support vector machines regression of time series data [J]. Reliability Engineering and System Safety, 2011, 96(11): 1527-1534.
[11] 孙文彩, 杨自春. 结构非概率可靠性分析的支持向量机分类方法[J]. 工程力学, 2012, 29(4): 150-154.
SUN Wen cai, YANG Zi chun. Support vector classification for structural non probabilistic reliability analysis [J]. Engineering Mechanics, 2012, 29(4): 150-154.
[12] DAI H, ZHAN H, WANG W. A support vector density based importance sampling for reliability assessment [J]. Reliability Engineering and System Safety, 2012, 106: 86-93.
[13] VANLI O A, JUNG S. Statistical updating of finite element model with Lamb wave sensing data for damage detection problems [J]. Mechanical Systems and Signal Processing, 2014, 42(1): 137-151.
[14] DEGRAUWE D, DE ROECK G, LOMBAERT G. Uncertainty quantification in the damage assessment of a cable stayed bridge by means of fuzzy numbers [J]. Computers and Structures, 2009, 87(17): 1077-1084.
[15] ZHAO Y G, ANG A H. On the first order third moment reliability method [J]. Structure and Infrastructure Engineering, 2012, 8(5): 517-527.
[16] KANG S C, KOH H M, CHOO J F. An efficient response surface method using moving least squares approximation for structural reliability analysis [J]. Probabilistic Engineering Mechanics, 2010, 25(4): 365-371.
[17] FRANGOPOL D M, IMAI K. Geometrically nonlinear finite element reliability analysis of structural systems. II: applications [J]. Computers and Structures, 2000, 77(6): 693-709.
[18] 朱劲松, 肖汝诚, 何立志. 大跨度斜拉桥智能可靠度评估方法研究[J]. 土木工程学报, 2007, 40(5): 41-48.
ZHU Jin song, XIAO Ru cheng, HE Li zhi. Reliability assessment of large span cable stayed bridges based on artificial intelligence [J]. China Civil Engineering Journal, 2007, 40(5): 41-48.

[1] 魏昊岩,李忠学,仲政. 新型九节点协同转动四边形弹塑性壳单元[J]. J4, 2012, 46(3): 424-430.
[2] 王奇,王亚勇,楼文娟,白雪霜. 体育场挑篷结构抗震性能试验及弹塑性分析[J]. J4, 2011, 45(1): 87-92.
[3] 乔华, 陈伟球. 基于Arlequin方法的结构多尺度数值模拟[J]. J4, 2010, 44(12): 2314-2319.
[4] 张年文, 童根树. 梁元修正拉格朗日法的刚体检验和节点力计算[J]. J4, 2010, 44(10): 1992-1997.
[5] 李忠学, 徐晋, 刘永方, 等. 采用应变差分离法的新型协同转动三边形曲壳单元[J]. J4, 2009, 43(8): 1506-1512.