浙江大学学报(农业与生命科学版), 2022, 48(3): 393-402 doi: 10.3785/j.issn.1008-9209.2021.05.173

农业工程

基于三维点云和集成学习的大田烟草株型特征识别

贾奥博,,1, 董天浩1, 张彦2, 朱冰琳1, 孙延国2, 吴元华2, 石屹2, 马韫韬1, 郭焱,,1

1.中国农业大学土地科学与技术学院,北京 100193

2.中国农业科学院烟草研究所,山东 青岛 266101

Recognition of field-grown tobacco plant type characteristics based on three-dimensional point cloud and ensemble learning

JIA Aobo,,1, DONG Tianhao1, ZHANG Yan2, ZHU Binglin1, SUN Yanguo2, WU Yuanhua2, SHI Yi2, MA Yuntao1, GUO Yan,,1

1.College of Land Science and Technology, China Agricultural University, Beijing 100193, China

2.Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China

通讯作者: 郭焱(https://orcid.org/0000-0001-9018-770X),E-mail:yan.guo@cau.edu.cn

收稿日期: 2021-05-17   接受日期: 2021-09-20  

基金资助: 中国烟草总公司山东省公司重点项目“山东‘中棵烟’特征及形成机制研究”.  201803

Received: 2021-05-17   Accepted: 2021-09-20  

作者简介 About authors

贾奥博(https://orcid.org/0000-0003-2657-9607),E-mail:aobo.jia@cau.edu.cn , E-mail:aobo.jia@cau.edu.cn

摘要

为构建高效的大田烟草株型定量化方法,本研究基于多视角图像序列并采用运动恢复结构算法重建了5个品种烟草植株的三维点云。根据常用的烟草株型特征指标,基于烟株三维点云自动提取株高、顶宽、底宽、叶层最大宽等10个表型参数,并基于大田原位手动测量的株高和叶层最大宽对计算精度进行评估。结果表明,基于三维点云提取的株高和叶层最大宽与实测值的决定系数(R2)均大于0.97,均方根误差分别为3.0、3.1 cm。同时,采用不同方法对提取的烟草表型性状进行分析。组间相关性分析结果表明,有16对性状呈极显著正相关,1对性状呈极显著负相关。单因素多元方差分析结果表明,各品种株型之间具有极显著差异。利用主成分分析提取前3个主成分,其对总体方差的累计贡献率为81.6%。基于Stacking集成学习方法进行株型判别,其准确率达到93.7%,显著高于随机森林、支持向量机和朴素贝叶斯等3种机器学习模型的准确率。本研究可为大田烟草表型特征及株型识别提供方法依据。

关键词: 三维点云 ; 烟草 ; 表型 ; 机器学习 ; 株型

Abstract

To develop an efficient method for quantifying tobacco plant types in the field, the three-dimensional (3D) point clouds of individual plant of five tobacco cultivars were reconstructed based on multi-view image sequences using the structure from motion method. According to the plant type characteristic indexes commonly used, ten phenotypic parameters such as plant height, top width, bottom width, and maximum width of leaf layer were automatically extracted based on the 3D point cloud of tobacco plant, and the calculation accuracy was evaluated based on the plant height and maximum width of leaf layer measured manually in situ in the field. The results indicated the coefficients of determination (R2) of the plant height and maximum width of leaf layer extracted from the 3D point cloud were all greater than 0.97, and the root mean square errors were 3.0, 3.1 cm, respectively. Meanwhile, the extracted phenotypic parameters of tobacco plants were analyzed by different methods. The results of intergroup correlation analysis showed that 16 pairs of traits were extremely significant positive correlations, while one pair of traits was extremely significant negative correlation. The results of one-way multivariate analysis of variance showed that there were highly significant differences among the plant types. The first three principal components were extracted by principal component analysis, and their cumulative contribution rate to the overall variance was 81.6%. The accuracy of plant type discrimination was 93.7% using Stacking ensemble learning method, which was significantly higher than those using random forest, support vector machine and naive Bayesian. This study can provide a method basis for phenotypic characteristics and plant type recognition of field-grown tobacco plants.

Keywords: three-dimensional point cloud ; tobacco ; phenotype ; machine learning ; plant type

PDF (2228KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

贾奥博, 董天浩, 张彦, 朱冰琳, 孙延国, 吴元华, 石屹, 马韫韬, 郭焱. 基于三维点云和集成学习的大田烟草株型特征识别. 浙江大学学报(农业与生命科学版)[J]. 2022, 48(3): 393-402 doi:10.3785/j.issn.1008-9209.2021.05.173

JIA Aobo, DONG Tianhao, ZHANG Yan, ZHU Binglin, SUN Yanguo, WU Yuanhua, SHI Yi, MA Yuntao, GUO Yan. Recognition of field-grown tobacco plant type characteristics based on three-dimensional point cloud and ensemble learning. Journal of Zhejiang University (Agriculture & Life Sciences)[J]. 2022, 48(3): 393-402 doi:10.3785/j.issn.1008-9209.2021.05.173

作物株型研究能为新品种选育、栽培措施优化提供理论指导[1-2]。烟草是中国重要的经济作物,株型对其生长发育具有重要影响,优化株型配置能够提高烟叶的品质及产量[3-4]。植物表型能够反映植物结构及组成、植物生长发育过程及结果的全部物理、生理、生化特征和性状[5],由基因和环境因素共同决定或影响。株高、茎叶夹角等表型对株型育种都是不可或缺的参数。因此,基于定量化的表型参数对不同品种烟草株型的研究具有重要意义。

传统大田人工识别株型需要测量多种参数,由于没有完全统一的标准,往往会存在较大差异。应用三维数字化技术,能够精确地构建大田烟草的冠层结构模型[6],进而从中提取表型参数,对不同株型进行判别分析。但该技术存在工作量大、耗时长等问题,且在大田环境下单独一人难以完成三维数字化的测量工作,且容易扰动植物,造成获取的三维模型不准确[7]。目前,采用运动恢复结构(structure from motion, SFM)算法可从基于多视角立体视觉(multi-view stereo, MVS)技术获取的同一目标的二维图像序列中高效地重建其形态结构信息,该算法已应用于室内作物冠层点云的重建[8-9],并在大田环境下有了初步尝试[10],取得了较好的结果。近年来,对烟草数字化和三维建模已有相关报道[6-7],研究内容多为三维模型的构建、各类点云分析算法的比较和精度评估[11]。但是基于三维点云提取表型参数后,采用各类机器学习方法进行株型判别的研究鲜有报道。

近年来,机器学习方法已越来越多地应用于农业领域。利用该方法进行作物病虫害诊断识别可解决人工识别速度慢、定量化困难的问题[12]。基于遥感平台获取的农作物多源多时相影像数据,应用机器学习可以进行作物识别和产量预测,以达到作物产量和质量的提升[13-14]。将机器学习与作物生长模型耦合可更好地预测水稻的抽穗期[15]。机器学习方法也被应用于全基因组关联研究中,用于候选基因识别、表型基因组预测等[16],从而帮助育种学家加快育种速度,缩短作物的育种周期。随着植物表型组学研究的深入,涉及的植物表型数据也更加复杂多样,传统的机器学习方法已经不能满足需求,而集成学习方法具有显著的优势,如:采用Stacking集成学习方法能够精确实现对水稻表型组学文本数据中水稻表型组学实体的分类,相比K-近邻算法的准确率提升了13%[17];预测森林单位蓄积量的集成学习方法相较单一模型的决定系数(R2)提升了0.26[18]

本研究选取多个烟草品种进行大田实验,采用多视角图像序列方法快速获取和重建冠层三维结构信息,并自动提取多种表型参数,进而基于Stacking集成学习方法开展不同烟草株型的判别分析,以期为育种科技工作者客观地判别烟草株型提供科学参考。

1 材料与方法

1.1 大田实验

田间实验在山东省潍坊市诸城市贾悦镇琅埠村(36°01′ N,119°11′ E)进行。土壤为褐土,pH为6.8。供试烟草品种为红花大金元、新K326、辽烟1号、青梗、利用甲基磺酸乙酯(ethylmethylsulfone, EMS)诱变获得的突变体(简称“EMS突变体”)。按照当地常规时期移栽烟苗。采用滴灌供水,其他田间管理按照常规进行,于现蕾期从每个品种中随机选取8棵烟株,总计40棵。

在多云且风速小的天气条件下,采用EOS 500D单反相机在大田中原位获取烟株的多视角图像序列。拍摄时以目标植株为中心,在半径为2 m左右的圆周上尽可能均匀地选取拍摄点,采取侧视与俯视结合的拍照方式,每个烟株获取140~170张图像。为确定实际烟株与对应点云间的几何换算系数,在目标植株重建范围内的地面上平置一块长40 cm、宽10 cm的哑光材质标签牌。拍照结束后立即用卷尺对烟株株高及叶层最大宽进行测量。

1.2 三维点云重建及预处理

对获取的烟草植株的多视角图像序列(图1A),采用基于SFM-MVS算法的开源软件Visual SFM进行冠层点云重建[10]图1B)。首先导入烟草的多视角图像序列,利用尺度不变特征变换匹配算法提取图像序列中的特征点,进一步通过随机采样一致性算法过滤错误的匹配点后重建出烟草植株的稀疏点云。基于多视角立体聚类视图和基于面片的多视角立体算法进行图像的聚簇、匹配、点云的扩散及过滤,生成烟草的稠密点云。由于大田环境的复杂性,重建点云中不可避免地会出现一些噪声,采用基于统计滤波器方法剔除密度较小的离群噪声[19],得到较为平滑的点云。

图1

图1   基于图像序列的烟草点云重建及预处理

Fig. 1   Tobacco point cloud reconstruction and pre-processing based on image sequences


由于拍照时未固定坐标系,得到的烟株通常不是直立的(图1B),需对其坐标进行旋转变换。利用随机采样一致性算法将地面点云拟合为平面[20]图1C),得到地面的法向量,然后完成坐标的旋转变换(图1D)。重建后的三维点云主要有植被与土壤2类点云,选择点云的绿色通道值(G)与红色通道值(R)之差作为颜色滤波器对点云进行分类[21],保留差值大于0的植被点云。最后,通过CloudCompare三维点云在线处理软件(http://www.danielgm.net/cc/)手动剔除杂草和落叶,得到单株点云(图1E)。

根据地面标签牌点云计算的边长及实际边长确定长度换算系数,然后基于重建的目标植株点云计算株高及叶层最大宽,并与实测的株高、叶层最大宽比较,采用均方根误差(root mean square error, RMSE)和R2评估重建点云的精度。

1.3 基于三维点云的烟草表型参数提取

参照行业内常用的烤烟株型划分方法[22]、YC/T 142—2010(《烟草农艺性状调查测量方法》)中采用的主要表型性状[23]及相关作物表型研究[24-27],确定了10个烟草表型参数(表1)。从预处理后的烟草三维点云中提取这些表型参数(图2)。10个表型参数的基本计算方法如下。

表1   提取的烟草表型参数

Table 1  Extracted phenotypic parameters of tobacco

表型参数

Phenotypic parameter

符号

Symbol

定义

Definition

株高 Plant height/cmH植株最高点到基部的距离
顶宽 Top width/cmWT最上部有效叶片叶尖至茎的垂直距离的2倍
底宽 Bottom width/cmWB最下部有效叶片叶尖至茎的垂直距离的2倍

叶层最大宽

Maximum width of leaf layer/cm

Wmax叶片叶尖距茎秆垂直距离最大值的2倍

叶层最大宽在叶层高的位置

Maximum width of leaf layer at

the height of the leaf layer/cm

HM叶层最大宽处端点到植株基部的垂直距离

最小包围盒体积

Minimum enclosing box volume/m3

VB包围点云的最小立方体的体积
凸包体积Convex hull volume/m3VC包含点云的最小凸多面体的体积
冠层投影包围盒面积Canopy projected enclosing box area/m2S冠层在X-Y平面上投影的最小矩形框面积

投影后凸包的面积

Area of convex hull after projection/m2

SC冠层在X-Y平面上投影后凸包的面积
茎叶夹角Stem and leaf angle/(°)α植株腰部叶片拟合平面与茎秆的夹角

新窗口打开| 下载CSV


图2

图2   烟草各表型参数提取示意图

A.烟株正视图;B.最小包围盒体积及凸包体积;C.烟株俯视图;D.茎叶夹角。各表型参数的含义见表1,下同。

Fig. 2   Schematic diagram of each phenotypic parameter extraction of tobacco

A. Front view of tobacco plant; B. Minimum enclosing box volume and convex hull volume; C. Top view of tobacco plant; D. Stem and leaf angle. Please see the Table 1 for the details of each phenotypic parameter, and the same as below.


株高(H):将单株点云的坐标校正去噪后,由三维坐标系中的Z轴最大值减去最小值而得到(图2A)。

顶宽(WT):三维坐标系最上部叶片叶尖处坐标点至茎的距离的2倍。计算该点到茎秆的距离,即为顶宽的一半(图2A)。

底宽(WB):三维坐标系最下部叶片叶尖处坐标点至茎的距离的2倍。计算该点到茎秆的距离,即为底宽的一半(图2A)。

叶层最大宽(Wmax):冠层投影最远处坐标点至茎的距离的2倍。将单株点云进行垂直投影,计算所有点到茎秆中心的距离,最大值即为叶层最大宽的一半(图2A)。

叶层最大宽在叶层高的位置(HM):在得到叶层最大宽所在的位置点后,计算该点Z值与三维坐标系中Z轴的最小值之差而得到(图2A)。

最小包围盒体积(VB):植株点云在X、Y、Z坐标轴最小值及最大值的8个点所构成的立方体的体积(图2B)。即计算出其长、宽、高,进而得到体积VB

凸包体积(VC):包含所有点云的最小凸多面体的体积(图2B)。由MATLAB2020b自带函数boundary计算得到。

冠层投影包围盒面积(S):植株冠层在X-Y平面上投影的最小矩形框面积(图2C)。即计算出长、宽,进而得到面积S

投影后凸包的面积(SC):投影后包含冠层二维所有点的最小凸多边形的面积(图2C)。由MATLAB2020b自带函数boundary计算得到。

茎叶夹角(α):植株腰部叶片拟合平面内的任一向量与茎秆向量之间的夹角。将叶片拟合为平面,计算平面向量和Z轴所在向量的夹角(图2D)。

1.4 表型参数的统计分析

采用单因素多元方差分析比较不同品种间的株型差异,并获取各表型参数在株型间的差异显著性。采用皮尔逊(Pearson)相关系数进行组间相关性分析,确定各表型参数间的线性相关程度。采用主成分分析(principal component analysis, PCA)进行数据降维[28-30],把大量的相关变量转化为一组较少的不相关变量,同时消除变量之间的多重共线性。采用R-4.0.3软件stats包中的cor和manova函数进行相关性分析和单因素多元方差分析,以及FactoMineR包中的PCA函数降维得到主成分。

1.5 基于机器学习的烟草株型判别

根据5个品种的株型信息对烟草数据集进行人工标记,将红花大金元标记为筒型,新K326标记为鼓型,辽烟1号标记为长筒型,青梗标记为塔型,EMS突变体标记为低台型。采用累计贡献率大于80%的前3个主成分进行株型判别,随机选取样本的60%作为训练集,剩余的40%作为预测集。将训练集输入机器学习模型进行训练,得到训练好的模型。将剩下的40%预测集输入训练好的模型,根据模型输出的类别与事先标记的类别进行对比,判断模型的准确率。

由于不同的机器学习模型在解决某个具体问题时,各有其优点和缺点。而采用集成方法将多个机器学习模型进行结合,可集成各个模型的优点并摒弃其缺点。Stacking集成学习方法即通过定义一个初级学习器,采用多个模型进行训练,将所得结果输入由选定模型构成的次级学习器进行建模判别[31],从而提高判别精度。

本文先采用随机森林、支持向量机、朴素贝叶斯3种机器学习模型分别建模,然后基于这3种机器学习模型采用Stacking集成学习方法构成初级学习器,并采用随机森林作为次级学习器进行建模(图3)。随机森林中决策树的数量(ntree)为100,其余均为默认值。非线性支持向量机中核函数采用径向基函数(rbf),模型类别采用C分类器模型(C-svc),模型确定的约束违反成本为10,其余为默认值。朴素贝叶斯全部采用默认参数。以上均在R-4.0.3软件中基于randomForest、kernlab、e1071包完成。

图 3

图 3   基于Stacking的集成学习方法

Fig. 3   Ensemble learning method based on Stacking


根据模型输出结果计算Kappa系数。该系数作为衡量模型判别性能的评价指标[32],取值为 -1~1,其值越大表明模型判别性能越好。

2 结果与分析

2.1 冠层点云重建与精度验证

基于SFM算法能够得到精确且稠密的冠层点云。由图4可见,5个品种的冠层点云均很好地保留了冠层结构信息,但不同品种的株型之间存在较大的差异。新K326叶倾角大于红花大金元,平均株高低于红花大金元。辽烟1号叶倾角较小,叶片较为平展,节间短,叶片分布密集。青梗具有较大的株高优势,叶片向下低垂,节间较长,叶片分布较为稀疏。EMS突变体株高偏低,叶片宽大,叶倾角适中。在同一时期,同一品种各烟株的三维形态基本相似。为评估基于多视角图像序列重建的冠层点云精度,本研究比较了由冠层重建点云计算的株高、叶层最大宽与大田实测值的差异(图5)。结果表明,与实测值相比,基于三维重建点云计算的2个参数的R2均在0.97以上,RMSE分别为3.0、3.1 cm,精度较高。

图4

图4   基于多视角图像序列重建的5个烟草品种植株的冠层点云

HH:红花大金元;XK:新K326;LY:辽烟1号;QG:青梗;EMS:EMS突变体。下同。

Fig. 4   Canopy point cloud of five tobacco cultivars based on multi-view image sequence reconstruction

HH: Honghuadajinyuan; XK: New K326; LY: Liaoyan No. 1;QG: Qinggeng; EMS: EMS mutant. The same as below.


图5

图5   基于冠层重建点云计算的烟草株高、叶层最大宽与测量值的比较

n: 样本数。

Fig. 5   Comparisons of plant height and maximum width of leaf layer calculated based on reconstructed point cloud of tobacco canopy with the measured values

n: Number of samples.


2.2 烟草表型参数差异与主成分分析

对10个表型参数进行相关性分析的结果表明,有16对性状呈极显著正相关,1对性状呈极显著负相关(图6)。其中,有10对性状存在强共线性,为叶层最大宽(Wmax)、冠层投影包围盒面积(S)、投影后凸包的面积(SC)、凸包体积(VC)及最小包围盒体积(VB)。仅株高与顶宽间呈极显著负相关(相关系数r为 -0.51),其他表型参数之间均呈正相关。表型参数之间存在的强共线性会影响模型的精度,故在建模判别时需用主成分分析(PCA)方法消除共线性。

图6

图6   表型参数相关性分析

*和**分别表示在P<0.05和P<0.01水平显著和极显著相关。

Fig. 6   Correlation analysis of phenotypic parameters

Single asterisk (*) and double asterisks (**) mean significant and extremely significant correlations at the 0.05 and 0.01 probability levels, respectively.


对烟草10个表型参数进行PCA,提取的前3个主成分的方差贡献率分别为48.2%、24.1%、9.3%,累计贡献率达到81.6%,故其可以代表原始数据的主要信息。第一主成分(PC1)中叶层最大宽(Wmax)、最小包围盒体积(VB)、凸包体积(VC)、冠层投影包围盒面积(S)、投影后凸包的面积(SC)具有较大的贡献率(图7),这5个表型初步决定了植株腰部的粗细,可以概括为腰部粗细影响因子。第二主成分(PC2)中株高(H)、茎叶夹角(α)、顶宽(WT)、底宽(WB)具有相对较大的贡献率,可以推断为烟株整体形状影响因子。第三主成分(PC3)中叶层最大宽在叶层高的位置(HM)具有极大的贡献率。

图 7

图 7   烟草表型对各主成分的贡献率

Fig. 7   Contribution rates of tobacco phenotypes to each principal component


2.3 表型参数差异分析与基于机器学习的株型判别

单因素多元方差分析结果表明,5个品种的株型不同,各表型存在极显著差异,其中株高、顶宽、叶层最大宽、冠层投影包围盒面积、投影后凸包的面积及茎叶夹角在各株型之间有极显著差异,而其余表型在株型之间差异不显著。通过两两比较发现,冠层投影包围盒面积与投影后凸包的面积之间不存在显著差异,其余表型均差异显著。

对基于冠层点云计算的表型参数进行分析,结果(图8)表明:株高(H)与顶宽(WT)的变化趋势恰好相反,但与底宽(WB)的变化趋势相似。青梗株高最高,均值为165.4 cm;EMS突变体株高最低,均值为115.0 cm。新K326顶宽最大,底宽最小,均值分别为63.3、56.4 cm;青梗顶宽最小,底宽最大,均值分别为22.9、80.3 cm。各品种叶层最大宽(Wmax)较为相似,其中,EMS突变体最大,均值为139 cm,大于株高,其余品种均在110 cm左右。叶层最大宽在叶层高的位置(HM)和茎叶夹角(α)有着较大的差别。青梗的叶层最大宽在叶层高的位置最高,均值为52.7 cm;新K326最低,均值为34.0 cm。青梗的茎叶夹角最大,均值为143.9°;辽烟1号最小,均值为35.5°。最小包围盒体积(VB)和凸包体积(VC)以及冠层投影包围盒面积(S)和投影后凸包的面积(SC)均具有相似的变化趋势。EMS突变体的冠层投影包围盒面积和投影后凸包的面积最大,均值分别为1.40、1.10 m2;新K326最小,均值分别为0.80、0.60 m2。EMS突变体的最小包围盒体积和凸包体积最大,均值分别为1.70、0.80 m3;新K326最小,均值分别为1.10、0.55 m3

图 8

图 8   烟草品种间各表型的差异比较

短栅上不同小写字母表示在P<0.05水平差异有统计学意义

Fig. 8   Comparisons of differences among phenotypes of tobacco cultivars

Different lowercase letters above bars indicate significant differences at the 0.05 probability level.


基于PCA提取的前3个主成分,将预测集输入训练好的机器学习模型,对模型输出的株型与事先标记的株型进行比较。结果表明,单独采用随机森林、支持向量机和朴素贝叶斯时,株型的判别准确率均在80%以上,但Kappa系数均低于0.8。采用Stacking集成学习模型时,株型判别准确率达到93.7%,Kappa系数为0.91(表2)。

表2   不同模型的株型判别准确率及评价指标比较

Table 2  Comparisons of plant type discrimination accuracy and evaluation indexes of different models

模型

Model

准确率

Accuracy/%

Kappa系数

Kappa coefficient

随机森林

Random forest

80.20.74

支持向量机

Support vector machine

80.90.75

朴素贝叶斯

Naive Bayesian

83.30.78

Stacking集成学习

Stacking ensemble learning

93.70.91

新窗口打开| 下载CSV


基于模型输出的混淆矩阵,发现株型判别错误主要发生在红花大金元与新K326之间,主要原因是这2个品种的株高、茎叶夹角等表型相似度较高。辽烟1号与新K326也容易被误判到EMS突变体中,可能是二者部分植株长势不均匀、叶片被折断等原因,使得表型数据较为接近EMS突变体,导致模型容易产生误判。

3 讨论

烟草的株型特征对其生长发育、产量及烟叶品质[22]都有重要的影响。传统的株型判别分析费时费力,需要测量多种表型参数,存在主观性,特别是对于株型差别较小的品种,容易产生判断误差。此外,叶层最大宽、顶宽、底宽等参数也不容易测量,且测量结果容易出现大的误差。故亟须开发高通量、高精度的株型判别分析方法。

本研究基于多视角图像序列精确高效地重建了烟草三维点云,所开发的烟草表型参数自动化提取程序能够准确地获取表型信息,可辅助育种科技工作者客观地判别烟草株型,避免人为的主观性判断。另外,通过数字化方法建立各类株型的数据库,挖掘一些不容易或者不可测量的表型特征,可为进一步完善株型的定义以及数据的深度挖掘提供基础资料。

相关性分析表明,烟草表型参数之间存在多重共线性。为提高株型判别的自动化和准确率,本研究采用PCA方法提取了前3个主成分,消除了表型参数之间的多重共线性。

基于Stacking集成学习方法融合了3种机器学习模型的优点,其对烟草株型判别的准确率达到93.7%,相比单独采用随机森林、支持向量机和朴素贝叶斯模型的准确率提高了10%以上,表明本研究所建立的方法能够比较精确地完成大田烟草株型的判别。今后将进一步加大样本量,避免大田烟株生长不均一对株型判别准确性的影响。同时,进一步研制烟草三维表型自动化获取平台,以实现作物株型的快速、精准和自动化判别。

4 结论

本研究利用相机获取了大田栽培的5个品种烟草植株于现蕾期的多视角图像序列,精确重建了植株冠层三维点云并自动提取了10个表型参数。结果表明,所获得的表型参数精度较高。对获得的表型参数进行分析表明,有16对性状呈极显著正相关,1对性状呈极显著负相关。进一步从10个表型参数中提取了前3个主成分,以消除表型参数之间的多重共线性。为实现株型判别的智能化,采用不同的机器学习模型对烟草株型进行了判别,其中基于Stacking集成学习方法的株型判别准确率达到93.7%,大大提高了株型判断的准确性。本研究可为获取大田作物表型参数方法的建立、株型的精确定量化与自动判别提供有力支持。

参考文献

DONALD C M.

The breeding of crop ideotypes

[J]. Euphytica, 1968, 17(3): 385-403. DOI:10.1007/bf00056241

[本文引用: 1]

袁隆平.

超级杂交水稻育种研究的进展

[J].中国稻米,2008(1):1-3.

[本文引用: 1]

YUAN L P.

Study development on breeding of super hybrid rice

[J]. China Rice, 2008(1): 1-3. (in Chinese)

[本文引用: 1]

王丰,丁伟,冯勇刚,.

烤烟优质适产理想株型探讨

[J].种子,2007,26(5):84-87.

[本文引用: 1]

WANG F, DING W, FENG Y G, et al.

Study on tobacco ideotype for high quality and adequate production

[J]. Seed, 2007, 26(5): 84-87. (in Chinese)

[本文引用: 1]

顾会战,母明新,史洪涛,.

关于烤烟“中棵烟”培育的若干思考

[J].中国烟草学报,2020,26(6):89-96. DOI:10.16472/j.chinatobacco.2020.T0015

[本文引用: 1]

GU H Z, MU M X, SHI H T, et al.

Some thoughts on 'Zhongkeyan'‍ cultivation of flue-cured tobacco

[J]. Acta Tabacaria Sinica, 2020, 26(6): 89-96. (in Chinese with English abstract)

DOI:10.16472/j.chinatobacco.2020.T0015      [本文引用: 1]

赵春江.

植物表型组学大数据及其研究进展

[J].农业大数据学报,2019,1(2):5-18. DOI:10.19788/j.issn.2096-6369.190201

[本文引用: 1]

ZHAO C J.

Big data of plant phenomics and its research progress

[J]. Journal of Agricultural Big Data, 2019, 1(2): 5-18. (in Chinese with English abstract)

DOI:10.19788/j.issn.2096-6369.190201      [本文引用: 1]

郭焱,史同鑫,吴劼,.

烟草植株静态虚拟模型的研究

[J].中国烟草学报,2012,18(5):29-33. DOI:10.3969/j.issn.1004-5708.2012.05.005

[本文引用: 2]

GUO Y, SHI T X, WU J, et al.

Development of static virtual tobacco model based on three-dimensional scanning methodology

[J]. Acta Tabacaria Sinica, 2012, 18(5): 29-33. (in Chinese with English abstract)

DOI:10.3969/j.issn.1004-5708.2012.05.005      [本文引用: 2]

王芸芸,温维亮,郭新宇,.

烟草地上部植株三维重构与可视化

[J].中国农业科学,2013,46(1):37-44. DOI:10.3864/j.issn.0578-1752.2013.01.005

[本文引用: 2]

WANG Y Y, WEN W L, GUO X Y, et al.

Research on three-dimensional reconstruction and visualization of above ground tobacco plant

[J]. Scientia Agricultura Sinica, 2013, 46(1): 37-44. (in Chinese with English abstract)

DOI:10.3864/j.issn.0578-1752.2013.01.005      [本文引用: 2]

DUAN T, CHAPMAN S C, HOLLAND E, et al.

Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes

[J]. Journal of Experimental Botany, 2016, 67(15): 4523-4534. DOI:10.1093/jxb/erw227

[本文引用: 1]

HUI F, ZHU J, HU P, et al.

Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations

[J]. Annals of Botany, 2018, 121(5): 1079-1088. DOI:10.1093/aob/mcy016

[本文引用: 1]

朱冰琳,刘扶桑,朱晋宇,.

基于机器视觉的大田植株生长动态三维定量化研究

[J].农业机械学报,2018,49(5):256-262. DOI:10.6041/j.issn.1000-1298.2018.05.030

[本文引用: 2]

ZHU B L, LIU F S, ZHU J Y, et al.

Three-dimensional quantifications of plant growth dynamics in field-grown plants based on machine vision method

[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 256-262. (in Chinese with English abstract)

DOI:10.6041/j.issn.1000-1298.2018.05.030      [本文引用: 2]

HOU T Y, ZHENG B Y, XU Z L, et al.

Simplification of leaf surfaces from scanned data: effects of two algorithms on leaf morphology

[J]. Computers and Electronics in Agriculture, 2016, 121: 393-403. DOI:10.1016/j.compag.2016.01.010

[本文引用: 1]

MOHANTY S P, HUGHES D P, SALATHÉ M.

Using deep learning for image-based plant disease detection

[J]. Frontiers in Plant Science, 2016, 7: 1419. DOI:10.3389/fpls.2016.01419

[本文引用: 1]

KUSSUL N, LAVRENIUK M, SKAKUN S, et al.

Deep learning classification of land cover and crop types using remote sensing data

[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. DOI:10.1109/LGRS.2017.2681128

[本文引用: 1]

CHLINGARYAN A, SUKKARIEH S, WHELAN B.

Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review

[J]. Computers and Electronics in Agriculture, 2018, 151: 61-69. DOI:10.1016/j.compag.2018.05.012

[本文引用: 1]

CHEN T, AOIKE T, YAMASAKI M, et al.

Predicting rice heading date using an integrated approach combining a machine learning method and a crop growth model

[J]. Frontiers in Genetics, 2020, 11: 599510. DOI:10.3389/fgene. 2020.599510

[本文引用: 1]

LI B, ZHANG N, WANG Y G, et al.

Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods

[J]. Frontiers in Genetics, 2018, 9: 237. DOI:10.3389/fgene.2018.00237

[本文引用: 1]

袁培森,杨承林,宋玉红,.

基于Stacking集成学习的水稻表型组学实体分类研究

[J].农业机械学报,2019,50(11):144-152. DOI:10.6041/j.issn.1000-1298.2019.11.016

[本文引用: 1]

YUAN P S, YANG C L, SONG Y H, et al.

Classification of rice phenomics entities based on Stacking ensemble learning

[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 144-152. (in Chinese with English abstract)

DOI:10.6041/j.issn.1000-1298.2019.11.016      [本文引用: 1]

WANG J, XU J, PENG Y, et al.

Prediction of forest unit volume based on hybrid feature selection and ensemble learning

[J]. Evolutionary Intelligence, 2020, 13(1): 21-32. DOI:10.1007/s12065-019-00219-4

[本文引用: 1]

鲁冬冬,邹进贵.

三维激光点云的降噪算法对比研究

[J].测绘通报,2019():102-105. DOI:10.13474/j.cnki.11-2246.2019.0599

[本文引用: 1]

LU D D, ZOU J G.

Comparative research on denoising algorithms of 3D laser point cloud

[J]. Bulletin of Surveying and Mapping, 2019(): 102-105. (in Chinese with English abstract)

DOI:10.13474/j.cnki.11-2246.2019.0599      [本文引用: 1]

FISCHLER M A, BOLLES R C.

Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography

[J]. Communications of the ACM, 1981, 24(6): 381-395. DOI:10.1145/358669.358692

[本文引用: 1]

XIAO S F, CHAI H H, SHAO K, et al.

Image-mased dynamic quantification of aboveground structure of sugar beet in field

[J]. Remote Sensing, 2020, 12(2): 269. DOI:10.3390/rs12020269

[本文引用: 1]

薛小平,赵会纳,陈懿,.

贵州烟区烤烟K326株型特征研究

[J].中国烟草科学,2013,34(1):34-39. DOI:10.3969/j.issn.1007-5119.2013.01.007

[本文引用: 2]

XUE X P, ZHAO H N, CHEN Y, et al.

Studies on plant type characteristics of flue-cured tobacco K326 in Guizhou

[J]. Chinese Tobacco Science, 2013, 34(1): 34-39. (in Chinese with English abstract)

DOI:10.3969/j.issn.1007-5119.2013.01.007      [本文引用: 2]

国家烟草专卖局. 烟草农艺性状调查测量方法: [S].北京:中国标准出版社,2010. DOI:10.1136/tc.2010.036079

[本文引用: 1]

State Tobacco Monopoly Administration. Investigating and Measuring Methods of Agronomical Character of Tobacco: [S]. Beijing: Standards Press of China, 2010. (in Chinese)

DOI:10.1136/tc.2010.036079      [本文引用: 1]

孔彦龙,高晓阳,李红玲,.

基于机器视觉的马铃薯质量和形状分选方法

[J].农业工程学报,2012,28(17):143-148. DOI:10.3969/j.issn.1002-6819.2012.17.021

[本文引用: 1]

KONG Y L, GAO X Y, LI H L, et al.

Potato grading method of mass and shapes based on machine vision

[J]. Transactions of the CSAE, 2012, 28(17): 143-148. (in Chinese with English abstract)

DOI:10.3969/j.issn.1002-6819.2012.17.021      [本文引用: 1]

吴正敏,曹成茂,王二锐,.

基于形态特征参数的茶叶精选方法

[J].农业工程学报,2019,35(11):315-321. DOI:10.11975/j.issn.1002-6819.2019.11.036

WU Z M, CAO C M, WANG E R, et al.

Tea selection method based on morphology feature parameters

[J]. Transactions of the CSAE, 2019, 35(11): 315-321. (in Chinese with English abstract)

DOI:10.11975/j.issn.1002-6819.2019.11.036     

柴宏红,邵科,于超,.

基于三维点云的甜菜根表型参数提取与根型判别

[J].农业工程学报,2020,36(10):181-188. DOI:10.11975/j.issn.1002-6819.2020.10.022

CHAI H H, SHAO K, YU C, et al.

Extraction of phenotypic parameters and discrimination of beet root types based on 3D point cloud

[J]. Transactions of the CSAE, 2020, 36(10): 181-188. (in Chinese with English abstract)

DOI:10.11975/j.issn.1002-6819.2020.10.022     

孙统,漆建波,黄华国.

手持式激光雷达观测玉兰物候期叶倾角变化

[J].遥感信息,2020,35(5):113-118. DOI:10.3969/j.issn.1000-3177.2020.05.014

[本文引用: 1]

SUN T, QI J B, HUANG H G.

Using handheld LiDAR to observe leaf inclination angels of Magnolia denudatain phenological period

[J]. Remote Sensing Information, 2020, 35(5): 113-118. (in Chinese with English abstract)

DOI:10.3969/j.issn.1000-3177.2020.05.014      [本文引用: 1]

WOLD S, ESBENSEN K, GELADI P.

Principal component analysis

[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3): 37-52. DOI:10.1016/0169-7439(87)80084-9

[本文引用: 1]

GRANATO D, SANTOS J S, ESCHER G B, et al.

Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: a critical perspective

[J]. Trends in Food Science & Technology, 2018, 72: 83-90. DOI:10.1016/j.tifs.2017.12.006

QUAN W, WU Z L, JIAO Y, et al.

Exploring the relationship between potato components and Maillard reaction derivative harmful products using multivariate statistical analysis

[J]. Food Chemistry, 2021, 339: 127853. DOI:10.1016/j.foodchem. 2020.127853

[本文引用: 1]

WOLPERT D H.

Stacked generalization

[J]. Neural Net- works, 1992, 5(2): 241-259. DOI:10.1016/s0893-6080(05)80023-1

[本文引用: 1]

WARRENS M J.

Cohen’s Kappa is a weighted average

[J]. Statistical Methodology, 2011, 8(6): 473-484. DOI:10.1016/j.stamet.2011.06.002

[本文引用: 1]

/