Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (4): 535-546    DOI: 10.3785/j.issn.1008-9209.2023.02.212
Research articles     
Suitability screening of soybean varieties at seedling stage under photovoltaic panels
Kaijun CHEN1(),Jishan ZHANG2,Kefeng HAN1,Huan LUO1,Qingxu MA1,Lianghuan WU1()
1.Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Huzhou Power Supply Company, State Grid Electric Power Co. , Ltd. , Huzhou 313300, Zhejiang, China
Download: HTML   HTML (   PDF(1831KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to investigate the suitability of different soybean varieties at seedling stage under a photovoltaic environment, the suitability evaluation of 31 soybean varieties (mainly promoted varieties in Zhejiang Province) was conducted under photovoltaic panels in a solar greenhouse (taking no photovoltaic panels as a control), and the effects of photovoltaic shading on soybean seedling growth were analyzed. The adaptability of soybean varieties to photovoltaic environments was comprehensively evaluated by shade tolerance evaluation model and cluster analysis. After 30 days of transplantation, 20 morphological, physiological and biomass indexes of soybeans were measured, and the shade tolerance coefficient of each trait was calculated. Through principal component analysis, membership function method and cluster analysis, the multiple traits of soybeans were transformed into six new comprehensive and independent indexes with weights of 0.251, 0.229, 0.170, 0.138, 0.126, and 0.115. According to the comprehensive evaluation value (D value), 31 soybean varieties were divided into three types: 9 materials were highly suitable, and 12 materials were moderately suitable, and 10 materials were poorly suitable. The highly suitable varieties included Bayueba, Dongshanbaimadou, Lanxidaqingdou, Jiafenglüpidou, Shaxindou, Tefandou 1, Zhexian 9, Zhexian 12, and Zhechun 14. The study provides a theoretical reference and suitable varieties for ensuring soybean growth and yield under an agriculture-light complementary system.



Key wordssolar energy      photovoltaic agriculture      photovoltaic panel framework      soybean     
Received: 21 February 2023      Published: 25 August 2023
CLC:  S565.1  
Corresponding Authors: Lianghuan WU     E-mail: 22014117@zju.edu.cn;finm@zju.edu.cn
Cite this article:

Kaijun CHEN,Jishan ZHANG,Kefeng HAN,Huan LUO,Qingxu MA,Lianghuan WU. Suitability screening of soybean varieties at seedling stage under photovoltaic panels. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 535-546.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.02.212     OR     https://www.zjujournals.com/agr/Y2023/V49/I4/535


光伏板下不同大豆品种苗期适宜性筛选

为探究光伏环境下不同大豆品种的苗期适宜性,对日光温室内光伏板下31个大豆品种(浙江省主推品种)进行适宜性评价(以无光伏板作为对照),分析光伏设施荫蔽对大豆苗期生长的影响,并通过耐荫性评价模型和聚类分析综合判断各大豆品种对光伏环境的适应能力。在移栽后30 d,测定大豆苗期的20个生长形态、生物量及生理指标,计算各性状的耐荫系数,并通过主成分分析、隶属函数法及聚类分析,把大豆的多个性状指标转化为6个新的综合且各自独立的指标,其权重分别为0.251、0.229、0.170、0.138、0.126、0.115。根据综合评价值(D值),光伏板下31个大豆品种苗期适宜性可分为强、良好、差3类,其中:9个品种为适宜性强,分别为八月拔、东山白马豆、兰溪大青豆、嘉丰绿皮豆、沙心豆、特泛豆1号、浙鲜9号、浙鲜12号、浙春14号;12个品种为适宜性良好;10个品种为适宜性差。本研究为农光互补体系下保障大豆的生长和产量提供了理论参考和适宜性品种。


关键词: 太阳能,  光伏农业,  光伏板构架,  大豆 

供试材料

Tested material

指标Index
mldmsdmrdPHHLSDLTSPADChl aChl bCarFoFmFv/FmNPQqPPnGsCiTr
极早2号 Jizao 20.640.710.631.541.780.750.850.981.061.060.981.171.251.103.690.940.640.421.040.56
12630.650.640.791.921.120.790.830.971.391.541.341.171.311.093.310.970.811.131.261.37
长江考1号 Changjiangkao 10.970.730.861.831.270.720.660.860.811.150.831.171.291.093.080.950.560.451.040.64
开心绿 Kaixinlü0.900.960.891.371.150.970.661.051.341.411.221.141.251.122.910.920.570.260.910.43
早熟王 Zaoshuwang0.630.690.771.731.010.730.460.841.171.251.061.141.161.143.780.880.730.411.010.63
浙春4号 Zhechun 40.830.690.712.791.240.920.850.931.031.220.771.131.151.183.750.870.720.530.970.66
科源特早 Keyuantezao0.880.990.721.171.150.860.751.150.871.140.791.141.171.093.800.920.670.501.010.67
科源8号 Keyuan 80.860.830.831.521.440.720.560.860.561.230.571.121.191.053.620.910.540.541.180.81
浙鲜4号 Zhexian 40.660.730.710.671.270.890.960.821.051.561.021.111.201.133.630.930.660.551.060.71
浙鲜5号 Zhexian 50.770.640.891.201.270.100.620.880.851.630.721.081.231.123.370.970.710.471.010.65
浙鲜8号 Zhexian 80.720.960.841.661.160.840.650.890.631.200.781.081.251.143.190.940.620.671.220.83
浙鲜9号 Zhexian 90.960.900.902.301.250.700.610.971.281.861.231.091.241.053.110.940.811.771.392.30
浙鲜11号 Zhexian 110.880.830.631.261.670.840.540.911.051.161.131.011.231.183.260.920.610.560.900.50
浙鲜12号 Zhexian 120.870.820.441.231.020.960.611.041.480.961.051.151.211.023.070.880.921.571.151.52
八月青 Bayueqing0.500.750.112.951.840.810.640.881.141.221.121.001.201.163.370.850.610.411.130.82
0922-10.840.820.731.541.070.890.780.961.341.351.311.091.211.083.340.970.711.391.410.99
里地豆儿 Lididouer0.490.750.312.541.050.930.700.951.141.291.071.181.210.973.320.990.610.931.160.91
浙春14号 Zhechun 140.750.950.331.271.080.840.841.041.401.642.011.111.310.963.061.060.691.291.340.99
东丹青 Dongdanqing0.830.650.821.951.220.660.700.971.211.211.621.191.311.023.150.980.631.291.341.20
AF-10.650.950.381.971.180.890.721.031.331.041.311.091.281.153.010.980.611.261.510.86
09420.780.620.531.831.060.670.670.771.071.221.071.281.211.283.450.870.991.851.251.39
兰溪大青豆 Lanxidaqingdou0.770.890.691.681.370.970.641.131.501.1023.101.141.121.043.860.830.950.901.101.05
八月拔 Bayueba0.880.840.651.211.300.780.680.921.542.141.621.111.151.284.160.830.570.891.211.43
嘉丰绿皮豆 Jiafenglüpidou0.650.720.971.511.220.840.680.891.391.551.341.111.101.184.210.860.941.731.241.24
特泛豆1号 Tefandou 10.950.760.831.281.160.790.750.901.411.521.281.101.201.193.340.940.921.501.151.32
乌豆 Wudou0.800.710.752.701.290.910.911.161.021.000.971.031.171.253.520.910.600.681.070.75
东山白马豆 Dongshanbaimadou0.570.620.891.011.120.950.970.961.391.631.341.141.151.003.570.900.722.151.141.78
厦门滕子豆 Xiamentengzidou0.780.750.661.511.420.460.520.951.341.111.081.291.181.333.140.900.830.911.072.28
乌皮青仁 Wupiqingren0.720.640.871.061.090.800.830.921.269.001.151.081.161.213.290.890.470.600.900.68
沙心豆 Shaxindou0.640.830.511.661.130.710.591.451.151.921.141.111.171.203.580.920.791.491.091.35
江山白毛 Jiangshanbaimao0.630.860.432.041.470.790.670.941.141.301.111.081.171.123.670.950.600.901.110.72
Table 1 Shade tolerance coefficient of individual index of soybeans at seedling stage
Fig. 1 Relative intensities of light with different wavelengths under different environmentsA. Under no photovoltaic panel; B. Under photovoltaic panel.
Fig. 2 Correlation analysis of shade tolerance coefficient of individual index of soybeans at seedling stageSingle asterisk (*) indicates significant correlations at the 0.05 probability level.

参量

Parameter

综合指标

Comprehensive index

CI1CI2CI3CI4CI5CI6
特征值 Eigenvalue3.4523.1462.3301.9071.7351.168
贡献率 Contribution ratio/%17.25915.73211.6519.5358.6745.842
累计贡献率 Cumulative contribution ratio/%17.25932.99244.64254.17862.85268.694
特征向量 Eigenvectormld0.050-0.054-0.3580.0070.7370.061
msd-0.003-0.3140.501-0.0850.6520.172
mrd-0.0120.235-0.5690.3800.352-0.249
PH-0.088-0.1090.329-0.495-0.3790.070
HL-0.5040.1450.204-0.474-0.0990.027
SD0.0990.0000.6900.4040.024-0.078
LT0.029-0.1090.1410.668-0.415-0.179
SPAD0.192-0.0440.4990.1010.3130.258
Chl a0.6570.1790.2510.214-0.0430.273
Chl b-0.1690.197-0.2160.618-0.1070.477
Car0.2190.3350.448-0.0300.346-0.328
Fo0.4560.061-0.424-0.175-0.042-0.302
Fm0.002-0.883-0.217-0.0990.010-0.027
Fv/Fm-0.1640.544-0.281-0.226-0.0550.513
NPQ-0.0750.7460.2080.053-0.128-0.293
qP0.040-0.889-0.1080.133-0.063-0.071
Pn0.7500.347-0.058-0.2440.074-0.194
Gs0.892-0.011-0.0240.091-0.1700.092
Ci0.625-0.4450.120-0.145-0.1670.030
Tr0.8010.131-0.209-0.191-0.0330.248
Table 2 Coefficients and contribution ratios of comprehensive indexes

供试材料

Tested material

u(X1)u(X2)u(X3)u(X4)u(X5)u(X6)

D

D value

综合评价

Comprehensive evaluation

权重 Weight0.2510.2290.1700.1380.1260.115
极早2号 Jizao 20.0000.4340.6110.4630.4450.1270.334适宜性差
12630.6450.3770.5000.6320.3700.5130.511适宜性良好
长江考1号 Changjiangkao 10.0250.0980.3120.4710.6580.2900.254适宜性差
开心绿 Kaixinlü0.0640.2150.5320.7871.0000.4190.426适宜性良好
早熟王 Zaoshuwang0.1400.5980.4850.5340.5430.1970.413适宜性良好
浙春4号 Zhechun 40.0740.4680.6720.3750.2020.3070.343适宜性差
科源特早 Keyuantezao0.1120.4300.5090.6960.8310.2060.431适宜性良好
科源8号 Keyuan 80.0030.2920.3020.4710.6070.2710.283适宜性差
浙鲜4号 Zhexian 40.1460.5250.3760.9700.6290.2500.455适宜性良好
浙鲜5号 Zhexian 50.0130.3630.0000.6380.6180.4370.289适宜性差
浙鲜8号 Zhexian 80.1430.1040.3980.5170.6280.3600.308适宜性差
浙鲜9号 Zhexian 90.9930.3280.3610.4680.4791.0000.596适宜性强
浙鲜11号 Zhexian 110.0000.3620.5390.5080.8190.3250.375适宜性差
浙鲜12号 Zhexian 120.8870.2670.5230.5610.6830.5670.585适宜性强
八月青 Bayueqing0.0150.2990.9880.0000.0000.5470.287适宜性差
0922-10.6380.2990.5710.7150.5950.4360.536适宜性良好
里地豆儿 Lididouer0.3580.1410.8060.3890.1130.4470.365适宜性差
浙春14号 Zhechun 140.6630.1520.4450.7890.7560.4620.578适宜性强
东丹青 Dongdanqing0.6120.2370.5120.4680.5570.3270.457适宜性良好
AF-10.5580.0000.8160.4140.4420.5250.436适宜性良好
09420.8200.4850.3370.4040.2670.4850.505适宜性良好
兰溪大青豆 Lanxidaqingdou0.5820.8851.0000.4950.8970.0000.700适宜性强
八月拔 Bayueba0.4981.0000.5370.8730.6670.6730.707适宜性强
嘉丰绿皮豆 Jiafenglüpidou0.7590.9620.5190.7380.4330.3280.683适宜性强
特泛豆1号 Tefandou 10.7350.5300.3530.7560.6920.5610.605适宜性强
乌豆 Wudou0.1480.3430.7610.3740.2970.3500.364适宜性差
东山白马豆 Dongshanbaimadou1.0000.6610.3991.0000.3960.5210.702适宜性强
厦门滕子豆 Xiamentengzidou0.7330.5180.2080.2360.6050.7610.511适宜性良好
乌皮青仁 Wupiqingren0.1820.4290.4160.7530.7240.1810.425适宜性良好
沙心豆 Shaxindou0.6290.5650.5720.6870.4930.8730.616适宜性强
江山白毛 Jiangshanbaimao0.2070.4120.7550.4160.3430.3990.409适宜性良好
Table 3 u(Xj ), weight, D value and comprehensive evaluation results of each tested material
Fig. 3 Cluster dendrogram for 31 soybean materials
[1]   CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. DOI: 10.1038/nature11475
doi: 10.1038/nature11475
[2]   GOETZBERGER A, ZASTROW A. On the coexistence of solar-energy conversion and plant cultivation[J]. International Journal of Solar Energy, 1982, 1(1): 55-69. DOI: 10.1080/01425918208909875
doi: 10.1080/01425918208909875
[3]   CHEL A, KAUSHIK G. Renewable energy for sustainable agriculture[J]. Agronomy for Sustainable Development, 2011, 31(1): 91-118. DOI: 10.1051/agro/2010029
doi: 10.1051/agro/2010029
[4]   汤飞,洪再生,丛安琪.基于光伏技术的都市农业发展[J].江西社会科学,2014,34(4):66-69.
TANG F, HONG Z S, CONG A Q. Development of urban agriculture based on photovoltaic technology[J]. Jiangxi Social Sciences, 2014, 34(4): 66-69. (in Chinese)
[5]   POLOMAN A, KNIGHT M, GARNETT E C, et al. Photo-voltaic materials: present efficiencies and future challenges[J]. Science, 2016, 352(6283): aad4424. DOI: 10.1126/science.aad4424
doi: 10.1126/science.aad4424
[6]   QOAIDER L, STEINBRECHT D. Photovoltaic systems: a cost competitive option to supply energy to off-grid agricultural communities in arid regions[J]. Applied Energy, 2010, 87(2): 427-435. DOI: 10.1016/j.apenergy.2009.06.012
doi: 10.1016/j.apenergy.2009.06.012
[7]   MISKIN C K, LI Y R, PERNA A, et al. Sustainable co-production of food and solar power to relax land-use constraints[J]. Nature Sustainability, 2019, 2(10): 972-980. DOI: 10.1038/s41893-019-0388-x
doi: 10.1038/s41893-019-0388-x
[8]   蒋高中,徐跑,刘辉芬,等.光伏产业的发展现状及其在农业中的应用[J].安徽农业科学,2016,44(20):60-62. DOI:10.13989/j.cnki.0517-6611.2016.20.020
JIANG G Z, XU P, LIU H F, et al. Development status of photovoltaic industry and its application in agriculture[J]. Journal of Anhui Agricultural Sciences, 2016, 44(20): 60-62. (in Chinese with English abstract)
doi: 10.13989/j.cnki.0517-6611.2016.20.020
[9]   陈健,王玲俊.我国光伏农业的发展阶段与地域分布[J].安徽农业科学,2020,50(8):246-249. DOI:10.3969/j.issn.0517-6611.2022.08.065
CHEN J, WANG L J. The development stage and regional distribution of photovoltaic agriculture in China[J]. Journal of Anhui Agricultural Sciences, 2020, 50(8): 246-249. (in Chinese with English abstract)
doi: 10.3969/j.issn.0517-6611.2022.08.065
[10]   汤俊超,吴宜文,张姚,等.浅谈“光伏+农业”产业的发展模式[J].中国农学通报,2022,38(11):144-152. DOI:10.11924/j.issn.1000-6850.casb2021-1022
TANG J C, WU Y W, ZHANG Y, et al. A brief introduction on the industrial development mode of photovoltaic agriculture[J]. Chinese Agricultural Science Bulletin, 2022, 38(11): 144-152. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2021-1022
[11]   王竹,杨文钰,吴其林.玉/豆套作荫蔽对大豆光合特性与产量的影响[J].作物学报,2007,33(9):1502-1507. DOI:10.3321/j.issn:0496-3490.2007.09.017
WANG Z, YANG W Y, WU Q L. Effects of shading in maize/soybean relay-cropping system on the photosynthetic characteristics and yield of soybean[J]. Acta Agronomica Sinica, 2007, 33(9):1502-1507. (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2007.09.017
[12]   罗晓峰,孟永杰,刘卫国,等.大豆响应荫蔽胁迫的形态及生理机制研究[J].分子植物育种,2018,16(3):979-988. DOI:10.13271/j.mpb.016.000979
LUO X F, MENG Y J, LIU W G, et al. Research of architectural and physiological mechanisms in response to shade stress in soybean[J]. Molecular Plant Breeding, 2018, 16(3): 979-988. (in Chinese with English abstract)
doi: 10.13271/j.mpb.016.000979
[13]   陈怀珠,孙祖东,杨守臻,等.荫蔽对大豆主要性状的影响及大豆耐荫性鉴定方法研究初报[J].中国油料作物学报,2003,25(4):78-82. DOI:10.3321/j.issn:1007-9084.2003.04.018
CHEN H Z, SUN Z D, YANG S Z, et al. Effect of shading on major characters of soybean and preliminary study on the identification method of soybean shade endurance[J]. Chinese Journal of Oil Crop Sciences, 2003, 25(4): 78-82. (in Chinese with English abstract)
doi: 10.3321/j.issn:1007-9084.2003.04.018
[14]   黄其椿,李初英,赵洪涛,等.菜用大豆种质资源遮光胁迫下的耐荫性研究[J].西南农业学报,2012,25(6):2212-2217. DOI:10.16213/j.cnki.scjas.2012.06.067
HUANG Q C, LI C Y, ZHAO H T, et al. Research of shade-tolerant on vegetable soybean germplasm resources under shading stress[J]. Southwest China Journal of Agricultural Sciences, 2012, 25(6): 2212-2217. (in Chinese with English abstract)
doi: 10.16213/j.cnki.scjas.2012.06.067
[15]   YANG F, WANG X C, LIAO D P, et al. Yield response to different planting geometries in maize-soybean relay strip intercropping systems[J]. Agronomy Journal, 2015, 107(1): 296-304. DOI: 10.2134/agronj14.0263
doi: 10.2134/agronj14.0263
[16]   于晓波,张明荣,吴海英,等.净套作下不同耐荫性大豆品种农艺性状及产量分布的研究[J].大豆科学,2012,31(5):757-761. DOI:10.3969/j.issn.1000-9841.2012.05.014
YU X B, ZHANG M R, WU H Y, et al. Agronomic characters and yield distribution of different shade tolerance soybeans under monoculture and relay strip intercropping systems[J]. Soybean Science, 2012, 31(5): 757-761. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-9841.2012.05.014
[17]   梁颖,李加纳.甘蓝型油菜耐荫性的品种差异[J].作物学报,2004,30(4):360-364. DOI:10.3321/j.issn:0496-3490.2004.04.011
LIANG Y, LI J N. The varietal difference of tolerance to low light intensity in rape (Brassica napus L.) plants[J]. Acta Agronomica Sinica, 2004, 30(4): 360-364. (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2004.04.011
[18]   邹成林,黄开健,翟瑞宁,等.基于隶属函数法和主成分分析评价玉米萌发期抗旱性[J].江苏农业科学,2022,50(13):7-13. DOI:10.15889/j.issn.1002-1302.2022.13.002
ZOU C L, HUANG K J, ZHAI R N, et al. Evaluation of drought resistance of maize during germination stage based on membership function method and principal components analysis[J]. Jiangsu Agricultural Sciences, 2022, 50(13): 7-13. (in Chinese with English abstract)
doi: 10.15889/j.issn.1002-1302.2022.13.002
[19]   李春红,姚兴东,鞠宝韬,等.不同基因型大豆耐荫性分析及其鉴定指标的筛选[J].中国农业科学,2014,47(15):2927-2939. DOI:10.3864/j.issn.0578-1752.2014.15.003
LI C H, YAO X D, JU B T, et al. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes[J]. Scientia Agricultura Sinica, 2014, 47(15): 2927-2939. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.15.003
[20]   武晓玲,梁海媛,杨峰,等.大豆苗期耐荫性综合评价及其鉴定指标的筛选[J].中国农业科学,2015,48(13):2497-2507. DOI:10.3864/j.issn.0578-1752.2015.13.002
WU X L, LIANG H Y, YANG F, et al. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean[J]. Scientia Agricultura Sinica, 2015, 48(13): 2497-2507. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2015.13.002
[21]   牟建梅,张国芹,刘凤军,等.白菜叶绿素含量的测定方法筛选[J].江苏农业科学,2014,42(9):289-290. DOI:10.15889/j.issn.1002-1302.2014.09.258
MU J M, ZHANG G Q, LIU F J, et al. Selection of determination methods for chlorophyll content in Chinese cabbage[J]. Jiangsu Agricultural Sciences, 2014, 42(9): 289-290. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2014.09.258
[22]   谢志坚.农业科学中的模糊数学方法[M].湖北,武汉:华中理工大学出版社,1983:99-193.
XIE Z J. Method of Fuzzy Mathematics in Agricultural Science[M]. Wuhan, Hubei: Huazhong University of Science and Technology Press, 1983: 99-193. (in Chinese)
[23]   毛诗雅,武佳丽,高静,等.弱光对苗期大豆叶片形态结构和光合荧光特性的影响[J].四川农业大学学报,2020,38(4):409-415. DOI:10.16036/j.issn.1000-2650.2020.04.005
MAO S Y, WU J L, GAO J, et al. Effects of shading on morphological structure and photosynthetic fluorescence characteristics of seedling soybean leaves[J]. Journal of Sichuan Agricultural University, 2020, 38(4): 409-415. (in Chinese with English abstract)
doi: 10.16036/j.issn.1000-2650.2020.04.005
[24]   范元芳,杨峰,王锐,等.弱光对大豆生长、光合特性及产量的影响[J].中国油料作物学报,2016,38(1):71-76. DOI:10.7505/j.issn.1007-9084.2016.01.012
FAN Y F, YANG F, WANG R, et al. Effects of low light on growth, photosynthetic characteristics and yield of soybean[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(1): 71-76. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2016.01.012
[25]   任梦露,刘卫国,刘婷,等.荫蔽胁迫下大豆茎秆形态建成的转录组分析[J].作物学报,2016,42(9):1319-1331. DOI:10.3724/SP.J.1006.2016.01319
REN M L, LIU W G, LIU T, et al. Transcriptome analysis of stem morphogenesis under shade stress in soybean[J]. Acta Agronomica Sinica, 2016, 42(9): 1319-1331. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01319
[26]   赵雪,邹志荣,许红军,等.光伏日光温室夏季光环境及其对番茄生长的影响[J].西北农林科技大学学报(自然科学版),2013,41(12):93-99. DOI:10.13207/j.cnki.jnwafu.2013.12.097
ZHAO X, ZOU Z R, XU H J, et al. Effects of summer light environment on tomato growth in photovoltaic solar greenhouse[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(12): 93-99. (in Chinese with English abstract)
doi: 10.13207/j.cnki.jnwafu.2013.12.097
[27]   刘明,吴迪,来永才,等.遮光对野生大豆叶片形态及功能的影响[J].大豆科学,2021,40(4):510-516. DOI:10.11861/j.issn.1000-9841.2021.04.0510
LIU M, WU D, LAI Y C, et al. Effects of shading on leaf morphology and function of wild soybean[J]. Soybean Science, 2021, 40(4): 510-516. (in Chinese with English abstract)
doi: 10.11861/j.issn.1000-9841.2021.04.0510
[28]   魏来,余明艳,覃楠楠,等.农光耦合系统对田间光照条件和甘薯生长的影响[J].浙江大学学报(农业与生命科学版),2019,45(3):288-295. DOI:10.3785/j.issn.1008-9209.2018.09.251
WEI L, YU M Y, QIN N N, et al. Effects of agro-photovoltaic integrating system on field illumination and sweet potato growth[J]. Journal of Zhejiang University (Agricul-ture and Life Sciences), 2019, 45(3): 288-295. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2018.09.251
[29]   GURURANI M A, VENKATESH J, TRAN L S P. Regulation of photosynthesis during abiotic stress-induced photoinhibition[J]. Molecular Plant, 2015, 8(9): 1304-1320. DOI: 10.1016/j.molp.2015.05.005
doi: 10.1016/j.molp.2015.05.005
[30]   李瑞,文涛,唐艳萍,等.遮阴对大豆幼苗光合和荧光特性的影响[J].草业学报,2014,23(6):198-206. DOI:10.11686/cyxb20140624
LI R, WEN T, TANG Y P, et al. Effect of shading on photosynthetic and chlorophyll fluorescence characteristics of soybean[J]. Acta Prataculturae Sinica, 2014, 23(6): 198-206. (in Chinese with English abstract)
doi: 10.11686/cyxb20140624
[31]   GONG W Z, JIANG C D, WU Y S, et al. Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping[J]. Photosynthetica, 2015, 53(2): 259-268. DOI: 10.1007/s11099-015-0103-8
doi: 10.1007/s11099-015-0103-8
[32]   王一,杨文钰,张霞,等.不同生育时期遮阴对大豆形态性状和产量的影响[J].作物学报,2013,39(10):1871-1879. DOI:10.3724/SP.J.1006.2013.01871
WANG Y, YANG W Y, ZHANG X, et al. Effects of shading at different growth stages on different traits and yield of soybean[J]. Acta Agronomica Sinica, 2013, 39(10): 1871-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01871
[33]   张建新,方依秋,丁彦芬,等.蕨类植物的叶绿素、光合参数与耐荫性[J].浙江大学学报(农业与生命科学版),2011,37(4):413-420. DOI:10.3785/j.issn.1008-9209.2011.04.009
ZHANG J X, FANG Y Q, DING Y F, et al. Chlorophyll contents, photosynthetic parameters, and shade tolerance of ferns[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 413-420. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2011.04.009
[34]   吴龙飞,孙铃尧,彭也,等.温室屋面光伏组件对温室微环境及作物净光合速率的影响:以草莓温室为例[J].云南师范大学学报(自然科学版),2021,41(5):10-15. DOI:10.7699/j.ynnu.ns-2021-053
WU L F, SUN L Y, PENG Y, et al. Study on the effect of photovoltaic modules on greenhouse microenvironment and net photosynthetic rate of crops in greenhouse: a case study of strawberry greenhouse in Kunming[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2021, 41(5): 10-15. (in Chinese with English abstract)
doi: 10.7699/j.ynnu.ns-2021-053
[35]   黄艳国,何勇,徐端平.光伏农业模式下耐荫中草药品种栽培试验研究[J].中国农业信息,2017(15):69-71.
HUANG Y G, HE Y, XU D P. Study on the cultivation experiment of shade-tolerant Chinese herbal medicine varieties under photovoltaic agriculture mode[J]. China Agricultural Information, 2017(15): 69-71. (in Chinese)
[36]   CHO J Y, PARK S M, PARK A R, et al. Application of photovoltaic systems for agriculture: a study on the relationship between power generation and farming for the improvement of photovoltaic applications in agriculture[J]. Energies, 2020, 13(18): 4815. DOI: 10.3390/en13184815
doi: 10.3390/en13184815
[37]   王璞,李百成,王立,等.不同大豆品种在苏北地区光伏农业中的应用简报[J].上海农业科技,2022(6):74-77, 80. DOI:10.3724/sp.j.1011.2009.01069
WANG P, LI B C, WANG L, et al. Application brief of different soybean varieties in photovoltaic agriculture in North of Jiangsu Province[J]. Shanghai Agricultural Science and Technology, 2022(6): 74-77, 80. (in Chinese)
doi: 10.3724/sp.j.1011.2009.01069
[1] Attached Table S1 Download
[1] Hui ZHANG,Yan HUAI,Weijun ZHOU,Yue FENG,Yuexing WANG. Current status and future prospects of soybean and oil crop production in Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 454-462.
[2] Jianfei LI,Xiaoxiao WANG,Yue SHU,Qi HUANG,Guixiang TANG. Advances in the pathogenic classification, epidemiological monitoring and control of soybean anthracnose[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 463-471.
[3] Zhaohong LU,Tingting TAN,Yiming TENG,Wenyu YANG,Feng YANG. Phenotypes and photosynthetic characteristics of soybeans and peanuts in response to shading[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 526-534.
[4] Zongyong SHI,Ziyan CHEN,Chen QI,Cheng WANG,Mengxiao ZHAO,Xiaying LI,Wenbin WANG,Jianqin YUAN,Dongmei XU,Yonggang QIAO,Jiandong LIU,Xiujie ZHANG,Jianhua GAO. Construction and application of a novel multiple target plasmid used for identification of 18 genetically modified soybean transformants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 280-290.
[5] Jiahui WENG,Yiyuan LOU,Jing XU,Junguang HE,Xiaoli ZHANG,Yongli LIU. Acquisition and functional validation of transgenic AM79-EPSPS glyphosate-resistant soybean (Glycine max L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 675-684.
[6] Jiangsheng GUI,Zixian WU,Kai LI. Hyperspectral imaging for early detection of soybean mosaic disease based on convolutional neural network model[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 256-262.
[7] PANG Ting, SHUAI Peng, CHEN Ping, DU Qing, FU Zhidan, YANG Wenyu, YONG Taiwen. Effects of different nodulation varieties and row spacings on nodule growth, dry matter accumulation and distribution of relay strip intercropping soybean[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 451-461.
[8] FANG Ping, LIU Weiguo, LIU Xiaode, LIU Ting, CHI Xiaoyu, XU Yan, PANG Ting, PENG Xiao, CAI Ling, YANG Wenyu. Effect of maize-soybean intercropping on quality of vegetable soybean[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 556-.
[9] Cheng Yunqing1*, Zhang Qi2, Liu Jianfeng1, Zhang Huidi1, Zhang Chunji1. Studies on pollen fertility regulated by exogenous ethylene in soybean[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 25-32.
[10] MA Lin1, ZHOU Lian1, ZHOU Zheng-jian1, TANG Gui-xiang2, SHEN Zhi-cheng2, SHOU Hui-xia1*. Establishment of methods for identifying rapidly and precisely transgenic rice and soybean containing herbicide-resistant gene bar and EPSPS[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 647-654.
[11] FAN Juexin1,2, ZHANG Bin2,LI Lili1, YUAN Xiaoxue1, GENG Meimei1, LUO Jiajie2. Effects of soybean isoflavones on reproductive organ development and biochemical indices of male Xiang pigs[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 477-484.
[12] LEI Ting,XIANG Dabing,GUO Kai,YANG Wenyu, LIU Zengyu,CHEN Xiaorong. Effects of phosphorus and potassium fertilizers on dry matter accumulation, distribution and yield of relay strip intercropping soybean.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 318-328.
[13] WAN Yan,YAN Yan hong,YANG Wen yu. Effects of foliar spraying uniconazole on growth and nitrogen metabolism of relay strip intercropping soybeanunder different nitrogen levels.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(2): 185-196.