Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (3): 280-290    DOI: 10.3785/j.issn.1008-9209.2019.08.122
Biological sciences & biotechnology     
Construction and application of a novel multiple target plasmid used for identification of 18 genetically modified soybean transformants
Zongyong SHI1,Ziyan CHEN2,Chen QI1,Cheng WANG1,Mengxiao ZHAO1,Xiaying LI2,Wenbin WANG1,Jianqin YUAN1,Dongmei XU1,Yonggang QIAO1,Jiandong LIU1,Xiujie ZHANG2(),Jianhua GAO1()
1.College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
2.Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100025, China
Download: HTML   HTML (   PDF(4477KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel multiple target plasmid (MTP) molecule that satisfies the identification of specific transgenic soybean transformants in China was constructed. Fourteen transformants approved for import into China and four ones unauthorized but have important application prospects, were chosen as the targets. The transformants’ specific sequences described in corresponding national detection standard and the detection sequence of the soybean endogenous reference gene Lectin were properly arranged and spliced, and then was inserted to linearized pUC18 plasmid to produce a multi-target plasmid pDDID-1905. Among the insertion sequences, plenty of restriction endonuclease recognition sites were dispersed uniquely, which could be used for later revision and/or update of the plasmid. Polymerase chain reaction (PCR) detection targeted on the 19 inserted sequences was performed to verify the utility of the plasmid. The results showed that all target sequences were successfully amplified and the products met the expected sizes, which indicated that the multi-target plasmid pDDID-1905 suitable for the identification of 18 transgenic transformants was constructed. Due to the widest target coverage of pDDID-1905, it will greatly simplify the cumbersome preparation of positive materials for identifying these transgenic soybean transformants and their derivates.



Key wordsgenetically modified soybean      plasmid      positive molecule      transformant specific detection      transformant specific sequence     
Received: 12 August 2019      Published: 17 July 2020
CLC:  S 565.1  
Corresponding Authors: Xiujie ZHANG,Jianhua GAO     E-mail: zhxj7410@sina.com;gaojh_edu@163.com
Cite this article:

Zongyong SHI,Ziyan CHEN,Chen QI,Cheng WANG,Mengxiao ZHAO,Xiaying LI,Wenbin WANG,Jianqin YUAN,Dongmei XU,Yonggang QIAO,Jiandong LIU,Xiujie ZHANG,Jianhua GAO. Construction and application of a novel multiple target plasmid used for identification of 18 genetically modified soybean transformants. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 280-290.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.08.122     OR     http://www.zjujournals.com/agr/Y2020/V46/I3/280


一种用于鉴定18种转基因大豆转化体的多靶标质粒的构建与应用

本文拟构建一种可满足我国转基因大豆转化体鉴定需求的多靶标质粒(multiple target plasmid, MTP)分子。根据相应的国家农业检测标准,选定我国已经批准进口的14种独立转化体和尚未批准但具有重要应用前景的4种重要转化体,将这18种转化体的特征序列以及大豆内标准基因Lectin的检测序列合理排列后,接入pUC18质粒,构建一种多靶标质粒pDDID-1905。在插入序列之间,分布着多种位点单一的限制性内切酶识别序列,可用于后期对该质粒的修订和更新。对pDDID-1905质粒中包含的19种靶标序列进行聚合酶链式反应检测,以验证该质粒的实用性。结果显示,所有靶标序列均被成功扩增,其大小与预期一致。总之,本文构建的适用于18种转基因大豆转化体鉴定的阳性质粒分子pDDID-1905,是目前包含大豆转化体特征序列最多的多靶标质粒,其构建和应用将极大地简化烦琐的阳性物质准备工作。


关键词: 转基因大豆,  质粒,  阳性物质,  转化体特异性检测,  转化体特征序列 

序号

No.

事件

Event

外源基因

Exogenous gene

改良性状

Modified trait

1A2704-12pat草铵膦抗性
2A5547-127pat草铵膦抗性
3CV127csr1-2咪唑啉酮类抗性
4DAS-44406-6aad-12、pat、2mepsps2,4-二氯苯氧乙酸、草铵膦、草甘膦抗性
5DP305423gm-fad2-1、gm-hra脂肪酸改良;磺酰脲类抗性
6DP356043gat4601、gm-hra草甘膦、磺酰脲类抗性
7FG722mepsps、hppdPF W336草甘膦、对羟苯基丙酮酸双氧化酶抑制性除草剂抗性
8GTS40-3-2cp4-epsps草甘膦抗性
9MON87701cry1Ac抗虫
10MON87705cp4-epsps、 fad2-1A、 fatb1-A草甘膦抗性;脂肪酸改良
11MON87708dmo、cp4-epsps麦草畏、草甘膦抗性
12MON87769cp4-epsps、Nc.Fad3、Pj.D6D草甘膦抗性;脂肪酸改良
13MON89788cp4-epsps草甘膦抗性
14SYHT0H2pat、avhppd-03草铵膦、硝磺草酮抗性
15DAS-68416-4aad-12、pat2,4-二氯苯氧乙酸、草铵膦抗性
16DAS-81419-2pat、cry1Ac、cry1F草铵膦抗性;抗虫
17SHZD32-1G10-epsps草甘膦抗性
18MON87751cry1A.105、cry2Ab2抗虫
Table 1 Eighteen genetically modified soybean events and their modified traits

序号

No.

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

产物长度

Product length/bp

检测方法出处

Source of detection method

1Lec-1672FGGGTGAGGATAGGGTTCTCTG210农业部公告第2031号-8-2013
Lec-1881RGCGATCGAGTAGTGAGAGTCG
2A2704-FTGAGGGGGTCAAAGACCAAG239农业部公告第1485号-7-2010
A2704-RCCAGTCTTTACGGCGAGT
3A5547-FCGCCATTATCGCCATTCC317农业部公告第1485号-8-2010
A5547-RGCGGTATTATCCCGTATTGA
4CV127-FCCTTCGCCGTTTAGTGTATAGG238农业部公告第1782号-5-2012
CV127-RAGCAGGTTCGTTTAAGGATGAA
544406-FGGGGCCTGACATAGTAGCT259农业农村部公告第111号-11-2018
44406-RTAATATTGTACGGCTAAGAGCGAA
6305423-FCGTCAGGAATAAAGGAAGTACAGTA235农业部公告第1782号-4-2012
305423-RGCCCTAAAGGATGCGTATAGAGT
7356043-FCTTTTGCCCGAGGTCGTTAG145农业部公告第1782号-1-2012
356043-RGCCCTTTGGTCTTCTGAGACTG
8FG72-FTCGGGCTGCAGGAATTAATGT150农业部公告第2259号-8-2015
FG72-RTTTGGAGCAATAAACATGTGATAGC
9GTS40-3-2-FTTCAAACCCTTCAATTTAACCGAT370农业部公告第1861号-2-2012
GTS40-3-2-RAAGGATAGTGGGATTGTGCGTC
10MON87701-MFGCACGCTTAGTGTGTGTGTCAAAC150农业部公告第2259号-7-2015
MON87701-MRGGATCCGTCGACCTGCAGTTAAC
11MON87705-FCGCCAAATCGTGAAGTTTCTCATCT318农业部公告第2122号-4-2014
MON87705-RCAGTGATAACAACACCCTGAGTCT
12MON87708-FCCATCATACTCATTGCTGATCCA233农业部公告第2259号-6-2015
MON87708-RAGCCAATCAATCTCAGAACTGTC
13MON87769-FCCGGACATGAAGCCATTTAC298农业部公告第2122号-5-2014
MON87769-RTCCTTGGAGGTCGTCTCATT
14MON89788-FCTGCTCCACTCTTCCTTT223农业部公告第1485号-6-2010
MON89788-RAGACTCTGTACCCTGACCT
15SYHT0H2-FGAGGCACCAACATTCTT234农业农村部公告第111号-10-2018
SYHT0H2-RTATCCGCAATGTGTTATTAA
16DAS-68416-4-FCCGCTACTTGCTCTTGTCGT221农业部公告第2630号-5-2017
DAS-68416-4-RCGGTTAGGATCCGGTGAGTA
17DAS-81419-2-FCCCATGTGAAGAAAATCCAACCAT252农业农村部公告第111号-9-2018
DAS-81419-2-RCCGAGAAGGTCAAACATGCTAA
18SHZD32-1FGAGCAGCTTGAGCTTGGA234农业部公告第2630号-15-2017
SHZD32-1RCGAATTTCACCAAAACACTAA
19MON87751-FTAGAGGAATAGTTAGCGAATGTGAC268待发布
MON87751-RGACAGACCTCAATTGCGAGC
Table 2 PCR detection of 19 target sequences
Fig. 1 Insertion sequence in pDDID-1905 plasmidThe main restriction sites were indicated in bold font with underlines.
Fig. 2 Diagram of pDDID-1905 plasmid construction
Fig. 3 Identification of pDDID-1905 plasmidA. Restriction map of pDDID-1905 plasmid (M: 1 kb plus DNA ladder; Lane 1: Restriction map by EcoRⅠ and HindⅢ; Lane 2: Restriction map by EcoRⅠ, HindⅢ and XhoⅠ); B. Result of the assembled sequencing contigs of pDDID-1905 plasmid.
Fig. 4 PCR products of specific sequences of pDDID-1905 plasmidM: DL2000 DNA marker (2 000, 1 000, 750, 500, 250 and 100 bp from top to bottom); -: Blank control (ddH2O was used as the template for PCR); pUC18: Unmodified pUC18 plasmid; Lane 1-2: pDDID-1905 plasmid.
Fig. 5 PCR products of the transgenic soybean mixturesM: DL2000 DNA marker (2 000, 1 000, 750, 500, 250 and 100 bp from top to bottom); -: Blank control (ddH2O was used as the template for PCR); N: Non-transgenic soybean; Lane 1-2: Transgenic soybean mixtures; +: pDDID-1905 plasmid.
 
[1]   FRAITURE M A, HERMAN P, TAVERNIERS I, et al. Current and new approaches in GMO detection: challenges and solutions. BioMed Research International, 2015,2015:392872. DOI:10.1155/2015/392872
doi: 10.1155/2015/392872
[2]   CORBISIER P, TRAPMANN S, GANCBERG D, et al. Quantitative determination of roundup ready soybean (Glycine max) extracted from highly processed flour. Analytical and Bioanalytical Chemistry, 2005,383(2):282-290. DOI:10.1007/s00216-005-0013-x
doi: 10.1007/s00216-005-0013-x
[3]   TAVERNIERS I, BOCKSTAELE E VAN, DE LOOSE M. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods. Analytical and Bioanalytical Chemistry, 2004,378(5):1198-1207. DOI:10.1007/s00216-003-2372-5
doi: 10.1007/s00216-003-2372-5
[4]   DEBODE F, MARIEN A, JANSSEN E, et al. Design of multiplex calibrant plasmids, their use in GMO detection and the limit of their applicability for quantitative purposes owing to competition effects. Analytical and Bioanalytical Chemistry, 2010,396(6):2151-2164. DOI:10.1007/s00216-009-3396-2
doi: 10.1007/s00216-009-3396-2
[5]   PI L Q, LI X, CAO Y W, et al. Development and application of a multi-targeting reference plasmid as calibrator for analysis of five genetically modified soybean events. Analytical and Bioanalytical Chemistry, 2015,407(10):2877-2886. DOI:10.1007/s00216-015-8517-5
doi: 10.1007/s00216-015-8517-5
[6]   WU Y H, LI J, LI X Y, et al. Development and strategy of reference materials for the DNA-based detection of genetically modified organisms. Analytical and Bioanalytical Chemistry, 2019,411(9):1729-1744. DOI:10.1007/s00216-019-01576-w
doi: 10.1007/s00216-019-01576-w
[7]   CAPRIOARA-BUDA M, MEYER W, JEYNOV B, et al. Evaluation of plasmid and genomic DNA calibrants used for the quantification of genetically modified organisms. Analytical and Bioanalytical Chemistry, 2012,404(1):29-42. DOI:10.1007/s00216-012-6104-6
doi: 10.1007/s00216-012-6104-6
[8]   BURNS M, CORBISIER P, WISEMAN G, et al. Comparison of plasmid and genomic DNA calibrants for the quantification of genetically modified ingredients. European Food Research and Technology, 2006,224(2):249-258. DOI:10.1007/s00217-006-0376-z
doi: 10.1007/s00217-006-0376-z
[9]   TOYOTA A, AKIYAMA H, SUGIMURA M, et al. Quantification of genetically modified soybeans using a combination of a capillary-type real-time PCR system and a plasmid reference standard. Bioscience, Biotechnology, and Biochemistry, 2006,70(4):821-827. DOI:10.1271/bbb.70.821
doi: 10.1271/bbb.70.821
[10]   ISAAA. Global Status of Commercialized Biotech/GM Crops: 2017. Vol. ISAAA brief No. 53. New York, USA: ISAAA, 2017.
[11]   CAO Y P, XIAO P Y, BO L H, et al. Soybean Event SHZD32-01 and Method of Use Thereof: US20180230484. 2018-08-16. .
[12]   SHEN Z, LIN C, XU X, et al. Highly Glyphosate-resistant Mutated Gene, Method of Modification and Use Thereof: US20140298533. 2014-10-02. .com/y2014/0298533.html
[13]   李飞武,邵改革,邢珍娟,等.转基因大豆MON89788检测质粒标准分子的构建与应用.安徽农业科学,2010,38(23):12330-12333. DOI:10.13989/j.cnki.0517-6611.2010.23.192
LI F W, SHAO G G, XING Z J, et al. Construction of the plasmid reference molecule for detection of transgenic soybean MON89788. Journal of Anhui Agricultural Sciences, 2010,38(23):12330-12333. (in Chinese with English abstract)
doi: 10.13989/j.cnki.0517-6611.2010.23.192
[14]   ZHANG H B, YANG L T, GUO J C, et al. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of roundup ready soybean. Journal of Agricultural and Food Chemistry, 2008,56(14):5514-5520. DOI:10.1021/jf800033k
doi: 10.1021/jf800033k
[15]   许丽,李妍,张波,等.转基因大豆GTS40-3-2定量检测质粒DNA标准物质的研制.中国计量,2014(4):72-75. DOI:10.16569/j.cnki.cn11-3720/t.2014.04.004
XU L, LI Y, ZHANG B, et al. Development of quantitative detection of plasmid DNA standard material in transgenic soybean GTS40-3-2. China Metrology,2014(4):72-75. (in Chinese)
doi: 10.16569/j.cnki.cn11-3720/t.2014.04.004
[1] Jiahui WENG,Yiyuan LOU,Jing XU,Junguang HE,Xiaoli ZHANG,Yongli LIU. Acquisition and functional validation of transgenic AM79-EPSPS glyphosate-resistant soybean (Glycine max L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 675-684.