Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (5): 543-556    DOI: 10.3785/j.issn.1008-9209.2020.10.281
Reviews     
Application and prospect of lipid peroxidation in the study of biochemical effects of environmental pollutants
Hongquan QIU(),Xiaotie SHEN,Jing LIU,Daohui LIN,Yili HUANG()
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1186KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Lipid is one of the four major biochemical molecules, and it plays important roles in many life processes. Lipid peroxidation (LPO) is commonly used to measure the effect of environmental pollutants or contamination factors on biochemistry processes. In this review, we summarized different kinds of pollutants or contamination factors that have been reported to induce LPO, including metals or metalloids, nanophase materials with different chemical properties, organic pollutants such as polycyclic aromatic hydrocarbons and pesticides, as well as environmental physical and chemical stress factors such as ozone, heat wave and radiation. Lipid peroxidation can occur in cells of different evolutionary classes of species, including bacteria, fungi, plants and animals. Most pollutants or contamination factors induce LPO through producing reactive oxidative species or inhibiting anti-oxidation systems. Therefore, this reaction is one of the important indicators of oxidative stresses caused by environmental pollutants. The LPO indexes are influenced by exposure time and doses, organism differences, and the balance between oxidation and anti-oxidation systems. In the future, we should be able to better understand the roles of lipids in the biochemical reaction to environmental pollution by using multi-omics technology and new measurements about lipid composition and membrane function.



Key wordslipid      peroxidation      environmental pollutant      biochemical effect     
Received: 28 October 2020      Published: 27 October 2021
CLC:  X 131  
Corresponding Authors: Yili HUANG     E-mail: 3190103439@zju.edu.cn;yilihuang@zju.edu.cn
Cite this article:

Hongquan QIU,Xiaotie SHEN,Jing LIU,Daohui LIN,Yili HUANG. Application and prospect of lipid peroxidation in the study of biochemical effects of environmental pollutants. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 543-556.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.10.281     OR     http://www.zjujournals.com/agr/Y2021/V47/I5/543


脂质过氧化在环境污染物生化效应研究中的应用与展望

脂质是4大生物化学分子之一,参与了许多重要的生命活动过程。在研究环境污染物或污染因素的生化效应时,脂质过氧化程度是一项常用的检测指标。各种重金属或类金属,不同化学本质的纳米材料,多环芳烃、农药等有机污染物,以及臭氧、热浪、辐射等环境理化胁迫因素,都能引起脂质过氧化反应。脂质过氧化反应可以发生在不同进化阶层物种的细胞中,包括细菌、真菌、植物和动物等。大多数污染物或污染因素通过产生活性氧基团或抑制抗氧化系统的活性引起脂质过氧化反应,因此,该反应是环境污染物引起氧化应激效应的重要指标之一。脂质过氧化反应指标受实验设计中的污染物浓度、暴露时效、机体差异,特别是机体抗氧化系统的平衡作用等条件参数的影响。未来可以结合检测脂质组成和细胞膜功能的指标,以及利用现代组学的手段对参与脂质代谢的相关酶和基因进行研究,以期更全面地理解脂质在环境污染物生化效应中的作用。


关键词: 脂质,  过氧化,  环境污染物,  生化效应 
Fig. 1 Whole process of lipid peroxidation (LPO)
 
Fig. 2 Number of LPO-relevant papers published in recent yearsNumber represents the number of papers in the field of environmental science that used lipid peroxidation (LPO) as a key word.
金属或类金属 Metal or metalloid

受试对象

Subject

脂质过氧化反应效应

LPO effect

名称 Name浓度 Concentration

铝离子

Aluminium ion[15]

30 μmol/L

冬小麦

Triticum aestivum

促进(MDA)

铝离子

Aluminium ion[16]

196 μmol/L

拟南芥

Arabidopsis thaliana

促进(MDA)

铜离子

Copper ion[17]

10 mg/L

黑麦草(芽、根)

Lolium perenne (shoot, root)

抑制/促进(MDA)

铜离子

Copper ion[18]

1.3~2.6 mg/L

四膜虫

Tetrahymena thermophila

促进(MDA)

块状氧化铜

Bulk CuO[18]

1 500~2 500 mg/L

四膜虫

Tetrahymena thermophila

促进(MDA)

锌离子

Zinc ion[19]

20~100 mg/L

线蚓

Enchytraeus albidus

促进/抑制(MDA)

镉离子

Cadmium ion[20]

2~9 mg/L

大斑南乳鱼

Galaxias maculatus

促进(MDA)

铅离子

Lead ion[21]

1 mg/L

非洲鲶鱼(肝脏)

Silurus asotus (liver)

促进(MDA)

三氧化二钒

Vanadium trioxide[22]

10~200 μg/L

小鼠(肺巨噬细胞)

Mus musculus (pulmonary macrophage)

促进(MDA)

银离子

Silver ion[5]

0.05 mg/L

鲤鱼(鳃)

Cyprinus carpio (gill)

促进(MDA)

铂(Ⅳ)离子

Platinum (Ⅳ) ion[23]

0.1~10.0 μg/L

斑马贻贝

Dreissena polymorpha

促进(MDA)

Yttrium[14]

2.5 μmol/L

菹草

Potamogeton crispus

抑制(MDA)

砷(Ⅲ/Ⅳ)

Arsenic (Ⅲ/Ⅳ)[24]

100~1 000 μg/L

鲤鱼(鳃、肝脏)

Cyprinus carpio (gill, liver)

促进/抑制(MDA)
Table 1 Effects of different metals or metalloids on LPO indexes in different tested species
纳米材料 Nanophase material

受试对象

Subject

脂质过氧化反应效应

LPO effect

名称 Name浓度 Concentration

氧化钒纳米颗粒

Vanadium oxide nanoparticle[22]

10~200 μg/mL

人类内皮细胞

Human endothelial cells

促进(MDA)

银纳米颗粒

Ag nanoparticle[5]

0.25~1.25 mg/L

鲤鱼(鳃)

Cyprinus carpio (gill)

促进(MDA)

氧化铜纳米颗粒

CuO nanoparticle[18]

1 500~2 500 mg/L

四膜虫

Tetrahymena thermophila

促进(MDA)

氧化铝纳米颗粒

Al2O3 nanoparticle[16]

10 mg/L

拟南芥

Arabidopsis thaliana

无显著影响(MDA)

氧化铈纳米颗粒

Ceria nanoparticle[29]

0.3、3.0 mg/株

菠菜

Spinacia oleracea

无显著影响(MDA)

纳米零价铁

Nanoscale zero-valent iron[25]

100~1 000 mg/kg

水稻(根)

Oryza sativa (root)

抑制(MDA)

纳米二氧化硅

Nanoscale SiO2[28]

3 mg/kg

大麦(根)

Hordeum vulgare (root)

抑制(MDA)

硒纳米颗粒

Se nanoparticle[27]

3.5~63.4 μg/g

斑马鱼

Danio rerio

促进(LOOH)
Table 2 Effects of different nanophase materials on LPO indexes in different tested species
有机污染物或化合物 Organic pollutant or compound

受试对象

Subject

脂质过氧化反应效应

LPO effect

名称 Name浓度 Concentration

三氯苯酚

Trichlorophenol[36]

5 μmol/L

黄瓜

Cucumis sativus

促进(MDA)

邻苯二甲酸二(2-乙基己基)酯

Di(2-ethylhexyl) phthalate[37]

1.5 mg/L

秀丽隐杆线虫

Caenorhabditis elegans

促进(其他)

双酚S

Bisphenol S[38]

0.1~1 000.0 μg/L

鲤鱼(巨噬细胞)

Cyprinus carpio (macrophage)

促进(MDA)

双酚F

Bisphenol F[34]

100 ng/(g?d)

ICR小鼠(肝)

ICR mice (liver)

促进(MDA)

磷酸三(1,3-二氯异丙基)酯

Tris (1, 3-dichloro-2-propyl) phosphate[39]

0.1~1 000.0 μg/L

秀丽隐杆线虫

Caenorhabditis elegans

促进(4-HNE)

十溴联苯醚

Deca-brominated diphenyl ether[40]

10~500 μg/L

水稻

Oryza sativa

促进(MDA)

苯并芘

Benzopyrene[32]

0.33、1.00 μmol/L

虹鳟

Oncorhynchus mykiss

促进(MDA)

Phenanthrene[33]

0.5~50.0 μg/kg

SD大鼠

SD rats

促进(MDA)

β-氯氰菊酯

β-cypermethrin[41]

0.01、0.1 μg/L

斑马鱼

Danio rerio

促进/抑制(MDA)

草甘膦

Glyphosate[41]

52.08、104.15 mg/L

鲤鱼(鳃)

Cyprinus carpio (gill)

促进(MDA)

土霉素

Oxytetracycline[36]

50 μmol/L

黄瓜

Cucumis sativus

促进(MDA)

恩诺沙星

Enrofloxacin[4]

1~100 mg/L

微藻

Microalgae

促进/抑制(MDA)

嘧菌酯

Azoxystrobin[42]

2.5、5.0 mg/L

蛋白核小球藻

Chlorella pyrenoidosa

促进(MDA)

丙硫菌唑

Prothioconazole[43]

0.037 5~0.150 0 mg/L

斑马鱼(胚胎)

Danio rerio (embryo)

促进(MDA)

顺铂

Cisplatin[44]

0.1~100.0 ng/L

沙蚕

Nereis diversicolor

促进(MDA+4-HNE)

双氯芬酸

Diclofenac[20]

770 mg/L

大斑南乳鱼

Galaxias maculatus

抑制/促进(MDA)

对乙酰氨基酚

Paracetamol[28]

400 mg/kg

大麦(根、叶)

Hordeum vulgare (root, leaf)

无显著影响(MDA)

微囊藻毒素

Microcystic toxins[45]

3~30 μg/L

斑马鱼(肝)

Danio rerio (liver)

促进(MDA)

柠檬酸/乙二胺四乙酸(+铜)

Citric acid/EDTA (+ copper)[17]

0.157 mmol/L

(+0.157 mmol/L Cu)

黑麦草

Lolium perenne

促进/抑制(MDA)
Table 3 Effects of different organic pollutants on LPO indexes in different tested species
胁迫因素 Stress factor

受试对象

Subject

脂质过氧化

反应效应

LPO effect

名称 Name

浓度/强度

Concentration/intensity

臭氧

Ozone[57]

77 μg/L

水稻

Oryza sativa

促进(MDA)

聚苯乙烯

Polystyrene[52]

5 μmol/L

中华绒螯蟹

Eriocheir sinensis

促进(MDA)
PM2.5[8]5~20 μg/cm3

人内皮细胞系

Human endothelial cell line

促进(MDA)

海水酸化/全球变暖

Ocean acidification/global warming[47]

pH 7.9,25.5 ℃;pH 7.8,27.0 ℃

厚游仆虫、特氏杜氏藻

Euplotes crassus, Dunaliella tertiolecta

促进(其他)

盐胁迫

Salt stress[26]

0~75 mmol/L

草莓

Fragaria×ananassa

促进(MDA)

热浪

Heat wave[48]

20~30 ℃

翠绿丝?

Chalcolestes viridis

促进(MDA)

超声辐射

Ultrasonic radiation[56]

600 W,20 kHz

铜绿微囊藻

Microcystis aeruginosa

促进(MDA)

伽马射线

Gamma ray[54]

0.4~100.0 mGy/h

大型溞

Daphnia magna

促进(MDA)

紫外线

Ultraviolet[55]

30 W

微藻

Microalgae

促进(MDA)
Table 4 Effects of environmental physical and chemical stress factors on LPO indexes in different tested species
Fig. 3 Schematic illustration of the mechanism and influencing factors of LPO caused by environmental pollutants or contamination factors
[1]   SUNSHINE H, IRUELA-ARISPE M L. Membrane lipids and cell signaling. Current Opinion in Lipidology, 2017,28(5):408-413. DOI:10.1097/MOL.0000000000000443
doi: 10.1097/MOL.0000000000000443
[2]   王镜岩,朱圣庚,徐长法.生物化学.3版.北京:高等教育出版社,2002. DOI:10.15385/yb.miracle.2002
WANG J Y, ZHU S G, XU C F. Biochemistry. 3rd ed. Beijing: Higher Education Press, 2002. (in Chinese)
doi: 10.15385/yb.miracle.2002
[3]   JANERO D R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 1990,9(6):515-540. DOI:10.1016/0891-5849(90)90131-2
doi: 10.1016/0891-5849(90)90131-2
[4]   XIONG J Q, KURADE M B, JEON B H. Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium. Environmental Pollution, 2017,226:486-493. DOI:10.1016/j.envpol.2017.04.044
doi: 10.1016/j.envpol.2017.04.044
[5]   XIANG Q Q, WANG D, ZHANG J L, et al. Effect of silver nanoparticles on gill membranes of common carp: modification of fatty acid profile, lipid peroxidation and membrane fluidity. Environmental Pollution, 2020,256:113504. DOI:10.1016/j.envpol.2019.113504
doi: 10.1016/j.envpol.2019.113504
[6]   WANG S T, ZHUANG C L, DU J, et al. The presence of MWCNTs reduces developmental toxicity of PFOS in early life stage of zebrafish. Environmental Pollution, 2017,222:201-209. DOI:10.1016/j.envpol.2016.12.055
doi: 10.1016/j.envpol.2016.12.055
[7]   ESPíN S, RUIZ S, SáNCHEZ-VIROSTA P, et al. Oxidative status in relation to metal pollution and calcium availability in pied flycatcher nestlings: a calcium manipulation experiment. Environmental Pollution, 2017,229:448-458. DOI:10.1016/j.envpol.2017.05.094
doi: 10.1016/j.envpol.2017.05.094
[8]   WANG Y, TANG M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environmental Pollution, 2019,254(Pt A):112937. DOI:10.1016/j.envpol.2019.07.105
doi: 10
[9]   CHAN C Y, WANG W X. Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. Environmental Pollution, 2019,251:264-276. DOI:10.1016/j.envpol.2019.04.140
doi: 10.1016/j.envpol.2019.04.140
[10]   ZHAO H J, WANG Y, LIU J J, et al. The cardiotoxicity of the common carp (Cyprinus carpio) exposed to environ-mentally relevant concentrations of arsenic and subsequently relieved by zinc supplementation. Environmental Pollution, 2019,253:741-748. DOI:10.1016/j.envpol.2019.07.065
doi: 10.1016/j.envpol.2019.07.065
[11]   BONNERIS E, PERCEVAL O, MASSON S, et al. Sub-cellular partitioning of Cd, Cu and Zn in tissues of indigenous unionid bivalves living along a metal exposure gradient and links to metal-induced effects. Environmental Pollution, 2005,135(2):195-208. DOI:10.1016/j.envpol.2004.11.007
doi: 10.1016/j.envpol.2004.11.007
[12]   HAMED S M, HASSAN S H, SELIM S, et al. Physiological and biochemical responses to aluminum-induced oxidative stress in two cyanobacterial species. Environmental Pollution, 2019,251:961-969. DOI:10.1016/j.envpol.2019.05.036
doi: 10.1016/j.envpol.2019.05.036
[13]   XIE J, BAI X C, LAVOIE M, et al. Analysis of the proteome of the marine diatom Phaeodactylum tricornutum exposed to aluminum providing insights into aluminum toxicity mechanisms. Environmental Science & Technology, 2015,49(18):11182-11190. DOI:10.1021/acs.est.5b03272
doi: 10.1021/acs.est.5b03272
[14]   LYU K, WANG X, WANG L, et al. Rare-earth element yttrium enhances the tolerance of curly-leaf pondweed (Potamogeton crispus) to acute nickel toxicity. Environmental Pollution, 2019,248:114-120. DOI:10.1016/j.envpol.2019.01.120
doi: 10.1016/j.envpol.2019.01.120
[15]   YU Y, ZHOU W W, LIANG X, et al. Increased bound putrescine accumulation contributes to the maintenance of antioxidant enzymes and higher aluminum tolerance in wheat. Environmental Pollution, 2019,252(Pt B):941-949. DOI:10.1016/j.envpol.2019.06.045
doi: 10.1016/j.envpol.2019.06.045
[16]   JIN Y J, FAN X J, LI X X, et al. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environmental Pollution, 2017,228:517-527. DOI:10.1016/j.envpol.2017.04.073
doi: 10.1016/j.envpol.2017.04.073
[17]   JOHNSON A C, SINGHAL N. Influence of chelation on Cu distribution and barriers to translocation in Lolium perenne. Environmental Science & Technology, 2013,47(14):7688-7695. DOI:10.1021/es4002828
doi: 10.1021/es4002828
[18]   MORTIMER M, KASEMETS K, VODOVNIK M, et al. Exposure to CuO nanoparticles changes the fatty acid composition of protozoa Tetrahymena thermophila. Environmental Science & Technology, 2011,45(15):6617-6624. DOI:10.1021/es201524q
doi: 10.1021/es201524q
[19]   NOVAIS S C, GOMES S I L, GRAVATO C, et al. Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. Environmental Pollution, 2011,159(7):1836-1843. DOI:10.1016/j.envpol.2011.03.031
doi: 10
[20]   McRAE N K, GAW S, BROOKS B W, et al. Oxidative stress in the galaxiid fish, Galaxias maculatus, exposed to binary waterborne mixtures of the pro-oxidant cadmium and the anti-oxidant diclofenac. Environmental Pollution, 2019,247:638-646. DOI:10.1016/j.envpol.2019.01.073
doi: 10.1016/j.envpol.2019.01.073
[21]   SOLIMAN H A M, HAMED M, LEE J S, et al. Protective effects of a novel pyrazolecarboxamide derivative against lead nitrate induced oxidative stress and DNA damage in Clarias gariepinus. Environmental Pollution, 2019,247:678-684. DOI:10.1016/j.envpol.2019.01.074
doi: 10.1016/j.envpol.2019.01.074
[22]   W?RLE-KNIRSCH J M, KERN K, SCHLEH C, et al. Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells. Environmental Science & Technology, 2007,41(1):331-336. DOI:10.1021/es061140x
doi: 10.1021/es061140x
[23]   BRAND S J, ERASMUS J H, LABUSCHAGNE M, et al. Bioaccumulation and metal-associated biomarker responses in a freshwater mussel, Dreissena polymorpha, following short-term platinum exposure. Environmental Pollution, 2019,246:69-78. DOI:10.1016/j.envpol.2018.11.061
doi: 10.1016/j.envpol.2018.11.061
[24]   VENTURA-LIMA J, FATTORINI D, REGOLI F, et al. Effects of different inorganic arsenic species in Cyprinus carpio (Cyprinidae) tissues after short-time exposure: bioaccumulation, biotransformation and biological responses. Environmental Pollution, 2009,157(12):3479-3484. DOI:10.1016/j.envpol.2009.06.023
doi: 10
[25]   WANG J, FANG Z Q, CHENG W, et al. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environmental Pollution, 2016,210:338-345. DOI:10.1016/j.envpol.2016.01.028
doi: 10.1016/j.envpol.2016.01.028
[26]   ZAHEDI S M, ABDELRAHMAN M, HOSSEINI M S, et al. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 2019,253:246-258. DOI:10.1016/j.envpol.2019.04.078
doi: 10.1016/j.envpol.2019.04.078
[27]   NADERI M, SALAHINEJAD A, FERRARI M C O, et al. Dopaminergic dysregulation and impaired associative learning behavior in zebrafish during chronic dietary exposure to selenium. Environmental Pollution, 2018,237:174-185. DOI:10.1016/j.envpol.2018.02.033
doi: 10.1016/j.envpol.2018.02.033
[28]   SOARES C, BRANCO-NEVES S, DE SOUSA A, et al. Can nano-SiO2 reduce the phytotoxicity of acetaminophen?-A physiological, biochemical and molecular approach. Environmental Pollution, 2018,241:900-911. DOI:10.1016/j.envpol.2018.06.037
doi: 10.1016/j.envpol.2018.06.037
[29]   ZHANG H L, LU L, ZHAO X P, et al. Metabolomics reveals the “invisible” responses of spinach plants exposed to CeO2 nanoparticles. Environmental Science & Technology, 2019,53(10):6007-6017. DOI:10.1021/acs.est.9b00593
doi: 10.1021/acs.est.9b00593
[30]   KUANG D, ZHANG W Z, DENG Q F, et al. Dose-response relationships of polycyclic aromatic hydrocarbons exposure and oxidative damage to DNA and lipid in coke oven workers. Environmental Science & Technology, 2013,47(13):7446-7456. DOI:10.1021/es401639x
doi: 10.1021/es401639x
[31]   BORTEY-SAM N, IKENAKA Y, AKOTO O, et al. Oxidative stress and respiratory symptoms due to human exposure to polycyclic aromatic hydrocarbons (PAHs) in Kumasi, Ghana. Environmental Pollution, 2017,228:311-320. DOI:10.1016/j.envpol.2017.05.036
doi: 10.1016/j.envpol.2017.05.036
[32]   HE Y, FOLKERTS E J, ZHANG Y F, et al. Effects on biotransformation, oxidative stress, and endocrine disruption in rainbow trout (Oncorhynchus mykiss) exposed to hydraulic fracturing flowback and produced water. Environmental Science & Technology, 2017,51(2):940-947. DOI:10.1021/acs.est.6b04695
doi: 10.1021/acs.est.6b04695
[33]   GUO J J, WANG C G, GUO Z Z, et al. Exposure to environmental level phenanthrene induces a NASH-like phenotype in new born rat. Environmental Pollution, 2018,239:261-271. DOI:10.1016/j.envpol.2018.04.030
doi: 10.1016/j.envpol.2018.04.030
[34]   MENG Z Y, TIAN S N, YAN J, et al. Effects of perinatal exposure to BPA, BPF and BPAF on liver function in male mouse offspring involving in oxidative damage and metabolic disorder. Environmental Pollution, 2019,247:935-943. DOI:10.1016/j.envpol.2019.01.116
doi: 10.1016/j.envpol.2019.01.116
[35]   SUN C L, DUDLEY S, TRUMBLE J, et al. Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants. Environmental Pollution, 2018,234:39-47. DOI:10.1016/j.envpol.2017.11.041
doi: 10.1016/j.envpol.2017.11.041
[36]   AHAMMED G J, HE B B, QIAN X J, et al. 24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. Environmental Pollution, 2017,229:922-931. DOI:10.1016/j.envpol.2017.07.076
doi: 10.1016/j.envpol.2017.07.076
[37]   HOW C M, YEN P L, WEI C C, et al. Early life exposure to di(2-ethylhexyl) phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans. Environmental Pollution, 2019,251:871-878. DOI:10.1016/j.envpol.2019.04.141
doi: 10.1016/j.envpol.2019.04.141
[38]   QIU W H, YANG M, LIU J Y, et al. Bisphenol S-induced chronic inflammatory stress in liver via peroxisome proliferator-activated receptor gamma using fish in vivo and in vitro models. Environmental Pollution, 2019,246:963-971. DOI:10.1016/j.envpol.2018.11.039
doi: 10.1016/j.envpol.2018.11.039
[39]   WANG C, AN J, BAI Y C, et al. Tris(1, 3-dichloro-2-propyl) phosphate accelerated the aging process induced by the 4-hydroxynon-2-enal response to reactive oxidative species in Caenorhabditis elegans. Environmental Pollution, 2019,246:904-913. DOI:10.1016/j.envpol.2018.12.082
doi: 10.1016/j.envpol.2018.12.082
[40]   LI K L, CHEN J, ZHU L Z. The phytotoxicities of decabromodiphenyl ether (BDE-209) to different rice cultivars (Oryza sativa L.). Environmental Pollution, 2018,235:692-699. DOI:10.1016/j.envpol.2017.12.079
doi: 10.1016/j.envpol.2017.12.079
[41]   MU X Y, SHEN G M, HUANG Y, et al. The enantioselective toxicity and oxidative stress of beta-cypermethrin on zebrafish. Environmental Pollution, 2017,229:312-320. DOI:10.1016/j.envpol.2017.05.088
doi: 10.1016/j.envpol.2017.05.088
[42]   LU T, ZHU Y C, XU J H, et al. Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa. Environmental Pollution, 2018,234:379-388. DOI:10.1016/j.envpol.2017.11.081
doi: 10.1016/j.envpol.2017.11.081
[43]   TIAN S N, TENG M M, MENG Z Y, et al. Toxicity effects in zebrafish embryos (Danio rerio) induced by prothio-conazole. Environmental Pollution, 2019,255(Pt 2):113269. DOI:10.1016/j.envpol.2019.113269
doi: 10.1016/j.envpol.2019.113269
[44]   FONSECA T G DA, ABESSA D M S, BEBIANNO M J. Effects of mixtures of anticancer drugs in the benthic polychaete Nereis diversicolor. Environmental Pollution, 2019,252(Pt B):1180-1192. DOI:10.1016/j.envpol.2019.05.095
doi: 10.1016/j.envpol.2019.05.095
[45]   MA J G, FENG Y Y, JIANG S Y, et al. Altered cellular metabolism of HepG2 cells caused by microcystin-LR. Environmental Pollution, 2017,225:610-619. DOI:10.1016/j.envpol.2017.03.029
doi: 10.1016/j.envpol.2017.03.029
[46]   SOARES C, PEREIRA R, SPORMANN S, et al. Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants?-Evaluation of oxidative damage and antioxidant responses in tomato. Environmental Pollution, 2019,247:256-265. DOI:10.1016/j.envpol.2019.01.063
doi: 10.1016/j.envpol.2019.01.063
[47]   GOMIERO A, BELLERBY R G J, MANCA ZEICHEN M, et al. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming. Environmental Pollution, 2018,236:60-70. DOI:10.1016/j.envpol.2018.01.063
doi: 10.1016/j.envpol.2018.01.063
[48]   JANSSENS L, TüZüN N, STOKS R. Testing the time-scale dependence of delayed interactions: A heat wave during the egg stage shapes how a pesticide interacts with a successive heat wave in the larval stage. Environmental Pollution, 2017,230:351-359. DOI:10.1016/j.envpol.2017.06.082
doi: 10.1016/j.envpol.2017.06.082
[49]   DAI L L, LI P, SHANG B, et al. Differential responses of peach (Prunus persica) seedlings to elevated ozone are related with leaf mass per area, antioxidant enzymes activity rather than stomatal conductance. Environmental Pollution, 2017,227:380-388. DOI:10.1016/j.envpol.2017.04.068
doi: 10.1016/j.envpol.2017.04.068
[50]   PROKI? M D, RADOVANOVI? T B, GAVRI? J P, et al. Ecotoxicological effects of microplastics: examination of biomarkers, current state and future perspectives. Trends in Analytical Chemistry, 2019,111:37-46. DOI:10.1016/j.trac.2018.12.001
doi: 10.1016/j.trac.2018.12.001
[51]   A?MONAIT? G, LARSSON K, UNDELAND I, et al. Size matters: ingestion of relatively large microplastics contami-nated with environmental pollutants posed little risk for fish health and fillet quality. Environmental Science & Technology, 2018,52(24):14381-14391. DOI:10.1021/acs.est.8b04849
doi: 10.1021/acs.est.8b04849
[52]   YU P, LIU Z Q, WU D L, et al. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquatic Toxicology, 2018,200:28-36. DOI:10.1016/j.aquatox.2018.04.015
doi: 10.1016/j.aquatox.2018.04.015
[53]   BARBOZA L G A, LOPES C, OLIVEIRA P, et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Science of the Total Environment, 2020,717:134625. DOI:10.1016/j.scitotenv.2019.134625
doi: 10.1016/j.scitotenv.2019.134625
[54]   SONG Y, XIE L, LEE Y, et al. Integrative assessment of low-dose gamma radiation effects on Daphnia magna reproduction: toxicity pathway assembly and AOP development. Science of the Total Environment, 2020,705:135912. DOI:10.1016/j.scitotenv.2019.135912
doi: 10.1016/j.scitotenv.2019.135912
[55]   LU Z, ZHANG K, LIU X L, et al. High efficiency inactivation of microalgae in ballast water by a new proposed dual-wave UV-photocatalysis system (UVA/UVC-TiO2). Environmental Science and Pollution Research, 2019,26(8):7785-7792. DOI:10.1007/s11356-019-04268-1
doi: 10.1007/s11356-019-04268-1
[56]   AHN C Y, PARK M H, JOUNG S H, et al. Growth inhibition of Cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environmental Science & Technology, 2003,37(13):3031-3037. DOI:10.1021/es034048z
doi: 10.1021/es034048z
[57]   ASHRAFUZZAMAN M, LUBNA F A, HOLTKAMP F, et al. Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). Environmental Pollution, 2017,230:339-350. DOI:10.1016/j.envpol.2017.06.055
doi: 10.1016/j.envpol.2017.06.055
[58]   BORTEY-SAM N, IKENAKA Y, AKOTO O, et al. Association between human exposure to heavy metals/metalloid and occurrences of respiratory diseases, lipid peroxidation and DNA damage in Kumasi, Ghana. Environmental Pollution, 2018,235:163-170. DOI:10.1016/j.envpol.2017.12.005
doi: 10.1016/j.envpol.2017.12.005
[59]   SOUZA-BASTOS L R, BASTOS L P, CARNEIRO P C F, et al. Evaluation of the water quality of the upper reaches of the main Southern Brazil river (Iguacu river) through in situ exposure of the native siluriform Rhamdia quelen in cages. Environmental Pollution, 2017,231(Pt 2):1245-1255. DOI:10.1016/j.envpol.2017.08.071
doi: 10.1016/j.envpol.2017.08.071
[60]   PAN L Q, REN J Y, LIU J. Responses of antioxidant systems and LPO level to benzo(a)pyrene and benzo(k)fluoranthene in the haemolymph of the scallop Chlamys ferrari. Envi-ronmental Pollution, 2006,141(3):443-451. DOI:10.1016/j.envpol.2005.08.069
doi: 10.1016/j.envpol.2005.08.069
[61]   KOWALCZYK-PECKA D, PECKA S, KOWALCZUK-VASILEV E. Selected fatty acids as biomarkers of exposure to microdoses of molluscicides in snails helix pomatia (Gastropoda Pulmonata). Environmental Pollution, 2017,222:138-145. DOI:10.1016/j.envpol.2016.12.068
doi: 10.1016/j.envpol.2016.12.068
[62]   杨晶,陈朋宇,钟文珏,等.氧化石墨烯和双酚A对斑马鱼早期发育氧化损伤的联合效应.科学通报,2019,64(21):2199-2206. DOI:10.1360/N972019-00340
YANG J, CHEN P Y, ZHONG W J, et al. The combined effects of graphene oxide and bisphenol A on oxidative damage in early development of zebrafish. Chinese Science Bulletin, 2019,64(21):2199-2206. (in Chinese with English abstract)
doi: 10.1360/N972019-00340
[63]   LI C S, YANG X Q, XU Y, et al. Cadmium detoxification induced by salt stress improves cadmium tolerance of multi-stress-tolerant Pichia kudriavzevii. Environmental Pollution, 2018,242(Pt A):845-854. DOI:10.1016/j.envpol.2018.07.058
doi: 10.1016/j.envpol.2018.07.058
[64]   ZHU Y, WU X Y, LIU Y X, et al. Integration of transcriptomics and metabolomics reveals the responses of earthworms to the long-term exposure of TiO2 nanoparticles in soil. Science of the Total Environment, 2020,719:137492. DOI:10.1016/j.scitotenv.2020.137492
doi: 10.1016/j.scitotenv.2020.137492
[1] Fuyin HOU,Zhiqing YANG,Changkuan CHEN,Kai SHI,Chongfu JIN,Yingjiang CHEN. Effect of grape seed proanthocyanidin extract on intestine, slaughter performance, lipid metabolism and meat quality of broilers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 119-125.
[2] BEGUM Mahfuj Ara, SHI Xiaoxiao, BAI Yueliang, JIANG Yandong, ZHOU Wenwu, MAO Cungui, ZHU Zengrong. Molecular cloning and characterization of a serine palmitoyltransferase gene from rice (Oryza sativa) and its gene expression in defense response to brown planthopper[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 365-372.
[3] WANG Haoyi, LI Yuling, ZHU Le, JIANG Lixi. Effect of seed dormancy on lipid accumulation and its molecular mechanism in oilseed rape[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 397-403.
[4] WEI Changhui, LIU Yajun, YE Xiuxiang, LI Yue, MA Kun. Effects of intercropping potato with maize on soil and crop.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 54-64.
[5] YE Xinyi, ZHAO Xing, WANG Xiaopeng, ZHONG Yiming, YANG Jingping. Effects of soil Fe2+and Cd2+ on activities of antioxidant enzymes and Cd accumulation in rice plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 89-98.
[6] Cao Yu, Yan Yufang, Yang Wenjia, Xiong Zhengli, Wang Lijuan, Li Can. Influence of carbon dioxide controlled atmosphere on Oryzaephilus surinamensis Linne and its utilization of energy substances.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 631-640.
[7] FAN Tingting, FA Luke, FANG Fang, JIANG Yihong*. Effect of total alkaloids from lotus leaves on body mass and lipid regulation in vivo and in vitro. Journal of Zhejiang University[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 141-148.
[8] YUAN Gao-feng,SUN Hai-yan,LI Duo. Analysis of conjugated linolenic acid from plant seeds[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(3): 326-331.