Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (4): 391-400    DOI: 10.3785/j.issn.1008-9209.2019.02.141
Quantitative genetics & bioinformatics     
Genetic analysis of fruit sugar content in melon (Cucumis melo L.) based on a mixed model of major genes and polygenes
Hongxia YE(),Lü Lü,Rui HAI,Yuqing HU,Bingliang WANG()
Institute of Vegetable Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1614KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Sugar contents of six generation populations (P1, P2, F1, F2, B1 and B2) derived from the cross between low sugar content inbred line ‘Huapicaigua’ (Cucumis melo var. conmmon Makino) and high sugar content inbred line ‘XLH’ (Cucumis melo var. saccharinus Naud.) were determined by high performance liquid chromatography (HPLC) method. Fruit sugar related traits in melon were analyzed using the joint segregation analysis method of a mixed major gene plus polygene genetic model. The results showed that the genetic model E-0, incorporating two pairs of additive-dominance-epitasis major genes plus an additive-dominance-epitasis polygene, was the best-fitting genetic model for fruit fructose content; and the genetic model E-1, incorporating two pairs of additive-dominance-epistasis major genes plus an additive-dominant polygene, was the optimal genetic model for fruit glucose, sucrose and total sugar contents. The fructose, glucose, sucrose, and total sugar contents were all controlled by two pairs of major genes and polygenes; the additive effect of major genes was mainly negative, and the interaction between the major genes was in common. Among them, the dominant and dominant interaction effect of the major genes for fructose, glucose and total sugar contents were the strongest, while the dominant and additive interaction effect of the major genes for sucrose content was the strongest. The negative additive effect of polygenes for sucrose and total sugar contents was relatively obvious. The heritabilities of major genes in the F2 populations conferring the fructose, glucose, sucrose and total sugar contents were 85.7%, 86.2%, 92.7% and 85.0%, respectively; and the environment showed very little effect for fruit sugar content. Thus, in melon breeding, selection for high sugar content in early generation melon is desirable.



Key wordsCucumis melo L.      glucose      fructose      sucrose      total sugar      major gene plus polygene      genetic analysis     
Received: 14 February 2019      Published: 17 September 2019
CLC:  S 652  
Corresponding Authors: Bingliang WANG     E-mail: yehx@zju.edu.cn;blwang@zju.edu.cn
Cite this article:

Hongxia YE,Lü Lü,Rui HAI,Yuqing HU,Bingliang WANG. Genetic analysis of fruit sugar content in melon (Cucumis melo L.) based on a mixed model of major genes and polygenes. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 391-400.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.02.141     OR     http://www.zjujournals.com/agr/Y2019/V45/I4/391


甜瓜果实糖含量的主基因+多基因遗传分析

以‘花皮菜瓜’(低糖越瓜自交系)和‘XLH’(高糖厚皮甜瓜自交系)为亲本构建P1、P2、F1、F2、B1、B2 6个世代遗传群体,利用高效液相色谱法测定该6个世代遗传群体甜瓜果实糖含量,采用植物数量性状主基因+多基因混合遗传模型分析方法对甜瓜果实葡萄糖、果糖、蔗糖及总糖含量进行联合遗传分析。结果表明:甜瓜果实果糖含量受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制(E-0模型),葡萄糖、蔗糖和总糖含量受2对加性-显性-上位性主基因+加性-显性多基因控制(E-1模型);果糖、葡萄糖、蔗糖和总糖含量均为2对主基因+多基因遗传模型,主基因以负向增效为主,遗传主基因间普遍存在互作效应,控制果糖、葡萄糖和总糖含量的2对主基因间显性×显性互作效应最强,而控制蔗糖含量的主基因间显性×加性互作效应最强,控制蔗糖和总糖含量的多基因负向加性效应较明显;控制果糖、葡萄糖、蔗糖和总糖含量的主基因在F2中的遗传率分别为85.7%、86.2%、92.7%和85.0%,且受环境影响较小。因此,在甜瓜育种过程中对糖组分含量性状的定向选择宜在早世代进行。


关键词: 甜瓜,  葡萄糖,  果糖,  蔗糖,  总糖,  主基因+多基因,  遗传分析 
Fig. 1 Fruits of the two parents and F1 generation

世代

Generation

葡萄糖Glucose 果糖Fructose 蔗糖Sucrose 总糖Total sugar
P1 12.40±1.20a 11.94±1.16b 0.74±0.86b 25.08±2.85c
F1 12.01±1.37a 12.82±1.52b 5.65±3.17b 30.48±4.94b
P2 12.28±1.66a 14.68±1.57a 47.88±6.79a 74.84±8.84a
Table 1 Fruit sugar content in the two parents and F1 generation mg/g
Fig. 2 Frequency distribution for fruit sugar content in the segregation populations (F2, B1, B2)
模型Model 葡萄糖Glucose 果糖Fructose 蔗糖Sucrose 总糖Total sugar 模型Model 葡萄糖Glucose 果糖Fructose 蔗糖Sucrose 总糖Total sugar
A-1:1MG-AD 1 332.60 1 432.34 1 959.94 2 071.57 D-0:MX1-AD-ADI 1 199.26 1 375.65 1 788.57 1 904.06
A-2:1MG-A 1 348.31 1 449.90 2 190.87 2 150.56 D-1:MX1-AD-AD 1 343.96 1 407.14 1 887.16 1 946.73
A-3:1MG-EAD 1 265.34 1 422.10 1 919.01 2 044.62 D-2:MX1-A-AD 1 339.10 1 405.22 1 847.98 1 951.53
A-4:1MG-AEND 1 269.40 1 450.11 2 159.90 2 200.09 D-3:MX1-EAD-AD 1 340.29 1 400.53 1 814.36 1 943.34
B-1:2MG-ADI 1 223.85 1 430.12 1 777.33 1 907.45 D-4:MX1-AEND-AD 1 337.01 1 402.33 1 857.66 1 954.03
B-2:2MG-AD 1 335.70 1 412.45 1 834.12 1 980.11 E-0:MX2-ADI-ADI 1 208.16 1 302.25 1 775.59 1 909.34
B-3:2MG-A 1 415.05 2 085.71 2 181.71 2 234.55 E-1:MX2-ADI-AD 1 183.17 1 359.70 1 761.62 1 902.84
B-4:2MG-EA 1 350.63 1 451.90 2 098.04 2 115.64 E-2:MX2-AD-AD 1 346.29 1 406.04 1 772.18 1 949.09
B-5:2MG-AED 1 338.76 1 421.69 1 783.18 1 926.39 E-3:MX2-A-AD 1 327.02 1 364.24 1 860.63 1 952.63
B-6:2MG-EEAD 1 336.94 1 442.93 1 840.81 1 968.28 E-4:MX2-EA-AD 1 340.29 1 405.14 1 859.67 1 960.00
C-0:PG-ADI 1 209.97 1 372.27 1 867.91 1 966.79 E-5:MX2-AED-AD 1 342.28 1 403.00 1 768.43 1 945.20
C-1:PG-AD 1 339.69 1 403.54 1 861.67 1 958.78 E-6:MX2-EEAD-AD 1 340.29 1 402.27 1 787.03 1 931.72
Table 2 Akaike’s information criterion (AIC) value of various genetic models for fruit sugar content correlated traits in melon

模型

Model

世代

Generation

U 1 2 U 2 2 U 3 2 n W 2 Dn
D-0 P1 0.034(0.854 0) 0.028(0.866 5) 0.002(0.968 2) 0.046(0.898 0) 0.091(0.999 9)
F1 0.021(0.885 6) 0.018(0.892 5) 0.000(0.986 8) 0.038(0.944 4) 0.073(1.000 0)
P2 0.000(0.997 5) 0.019(0.889 2) 0.297(0.585 8) 0.063(0.801 2) 0.109(0.999 7)
B1 0.132(0.716 8) 0.279(0.597 5) 0.500(0.479 5) 0.065(0.789 4) 0.014(1.000 0)
B2 0.000(0.988 8) 0.000(0.987 4) 0.000(0.992 9) 0.090(0.650 4) 0.016(1.000 0)
F2 0.015(0.903 3) 0.026(0.870 9) 0.032(0.857 3) 0.034(0.963 5) 0.008(1.000 0)
E-1 P1 0.469(0.493 4) 0.496(0.481 5) 0.027(0.870 5) 0.095(0.621 5) 0.067(1.000 0)
F1 0.230(0.631 3) 0.194(0.659 7) 0.009(0.922 6) 0.048(0.887 6) 0.088(1.000 0)
P2 0.018(0.894 4) 0.070(0.791 2) 0.297(0.585 9) 0.064(0.795 7) 0.100(0.999 9)
B1 0.001(0.969 7) 0.027(0.870 4) 0.256(0.613 3) 0.039(0.939 9) 0.008(1.000 0)
B2 0.037(0.847 5) 0.045(0.832 9) 0.010(0.921 3) 0.066(0.780 7) 0.009(1.000 0)
F2 0.019(0.889 7) 0.022(0.882 6) 0.003(0.957 2) 0.018(0.998 7) 0.015(1.000 0)
Table 3 Fitness test of alternative inheritance models for fruit glucose content in melon

模型

Model

世代

Generation

U 1 2 U 2 2 U 3 2 n W 2 Dn
E-0 P1 0.036(0.850 6) 0.062(0.803 3) 0.071(0.789 7) 0.066(0.783 0) 0.114(0.997 2)
F1 0.009(0.924 0) 0.013(0.910 7) 0.006(0.937 0) 0.033(0.965 4) 0.125(0.995 1)
P2 0.002(0.963 2) 0.016(0.899 2) 0.108(0.743 0) 0.037(0.946 6) 0.104(0.999 9)
B1 0.047(0.828 7) 0.014(0.905 1) 1.729(0.188 5) 0.112(0.537 6) 0.011(1.000 0)
B2 0.015(0.901 2) 0.006(0.939 4) 0.616(0.432 6) 0.074(0.733 8) 0.013(1.000 0)
F2 0.079(0.778 3) 0.038(0.846 4) 0.100(0.752 4) 0.029(0.979 1) 0.010(1.000 0)
E-1 P1 1.213(0.270 7) 1.560(0.211 7) 0.533(0.465 4) 0.188(0.293 7) 0.065(1.000 0)
F1 0.279(0.597 2) 0.306(0.580 1) 0.028(0.868 0) 0.058(0.830 4) 0.097(0.999 9)
P2 0.079(0.778 1) 0.038(0.845 4) 0.097(0.755 5) 0.043(0.917 8) 0.128(0.996 7)
B1 0.476(0.490 3) 0.760(0.383 2) 0.666(0.414 4) 0.154(0.379 0) 0.011(1.000 0)
B2 0.108(0.742 4) 0.005(0.944 4) 2.409(0.120 6) 0.099(0.600 3) 0.012(1.000 0)
F2 0.242(0.623 1) 1.524(0.217 1) 9.205(0.002 4)* 0.489(0.043 3)* 0.010(1.000 0)
Table 4 Fitness test of alternative inheritance models for fruit fructose content in melon

模型

Model

世代

Generation

U 1 2 U 2 2 U 3 2 n W 2 Dn
E-1 P1 0.648(0.420 8) 0.802(0.370 5) 0.215(0.642 6) 0.226(0.225 9) 0.090(0.999 9)
F1 0.219(0.639 8) 0.172(0.678 1) 0.023(0.879 0) 0.043(0.919 8) 0.095(0.999 9)
P2 0.084(0.771 6) 0.124(0.724 5) 0.082(0.775 3) 0.049(0.881 4) 0.083(1.000 0)
B1 0.138(0.710 8) 0.008(0.930 7) 1.184(0.276 5) 0.060(0.818 7) 0.013(1.000 0)
B2 0.007(0.934 0) 0.083(0.773 7) 0.688(0.406 9) 0.099(0.603 4) 0.011(1.000 0)
F2 0.608(0.435 7) 0.444(0.505 0) 0.124(0.724 7) 0.156(0.374 6) 0.009(1.000 0)
E-5 P1 1.157(0.282 2) 3.091(0.078 7) 8.222(0.004 1)* 0.616(0.020 6)* 0.396(0.063 0)
F1 0.004(0.951 5) 0.098(0.754 3) 1.033(0.309 4) 0.050(0.878 9) 0.069(1.000 0)
P2 0.152(0.696 7) 0.841(0.359 2) 4.656(0.030 9)* 0.126(0.476 6) 0.117(0.999 1)
B1 0.848(0.357 1) 0.161(0.688 7) 3.858(0.049 5)* 0.279(0.161 7) 0.013(1.000 0)
B2 0.011(0.915 3) 0.005(0.944 6) 0.476(0.490 2) 0.088(0.660 5) 0.008(1.000 0)
F2 1.272(0.259 3) 0.623(0.430 1) 1.470(0.225 3) 0.240(0.207 2) 0.011(1.000 0)
Table 5 Fitness test of alternative inheritance models for fruit sucrose content in melon

模型

Model

世代

Generation

U 1 2 U 2 2 U 3 2 n W 2 Dn
D-0 P1 0.000(0.997 8) 0.004(0.952 2) 0.053(0.818 8) 0.047(0.895 7) 0.051(1.000 0)
F1 0.002(0.966 1) 0.003(0.959 5) 0.002(0.969 3) 0.021(0.996 5) 0.069(1.000 0)
P2 0.006(0.939 8) 0.000(0.997 0) 0.077(0.781 4) 0.057(0.835 3) 0.085(1.000 0)
B1 0.162(0.687 2) 0.450(0.502 4) 1.262(0.261 3) 0.145(0.406 2) 0.008(1.000 0)
B2 0.001(0.971 6) 0.074(0.785 2) 0.907(0.340 8) 0.057(0.836 5) 0.009(1.000 0)
F2 0.148(0.700 7) 0.067(0.796 4) 0.208(0.648 2) 0.079(0.710 8) 0.008(1.000 0)
E-1 P1 1.323(0.250 1) 1.264(0.260 9) 0.002(0.966 1) 0.171(0.331 4) 0.078(1.000 0)
F1 0.061(0.805 7) 0.064(0.800 4) 0.004(0.953 1) 0.027(0.986 1) 0.061(1.000 0)
P2 0.126(0.722 2) 0.064(0.800 4) 0.133(0.714 9) 0.073(0.744 5) 0.103(0.999 9)
B1 0.001(0.970 3) 0.049(0.825 4) 1.054(0.304 7) 0.048(0.887 8) 0.018(1.000 0)
B2 0.328(0.566 6) 0.028(0.868 4) 2.422(0.119 7) 0.119(0.503 9) 0.009(1.000 0)
F2 0.265(0.607 0) 0.049(0.824 8) 1.225(0.268 3) 0.096(0.615 1) 0.009(1.000 0)
Table 6 Fitness test of alternative inheritance models for fruit total sugar content in melon

参量

Parameter

模型

Model

一阶遗传参数值 First order genetic parameter value
m 1 m 2 m 3 m 4 m 5 m 6 m [d] [h]

果糖含量

Fructose content

E-0 15.674 12.162 2.080 13.231 13.701 13.228

葡萄糖含量

Glucose content

E-1 11.563 -1.242 2.889

蔗糖含量

Sucrose content

E-1 13.426 -12.383 -5.052

总糖含量

Total sugar content

E-1 35.586 -19.614 -16.523

参量

Parameter

模型

Model

一阶遗传参数值 First order genetic parameter value
da db ha hb i jab jba l

果糖含量

Fructose content

E-0 -4.083 -4.083 -3.532 -3.532 4.434 3.751 3.752 7.725

葡萄糖含量

Glucose content

E-1 0.542 0.542 -4.669 -5.620 1.212 0.951 -1.347 7.940

蔗糖含量

Sucrose content

E-1 -6.024 -6.024 -3.478 3.214 9.096 -2.449 10.488 -4.072

总糖含量

Total sugar content

E-1 -4.150 -4.150 -5.009 -5.691 10.343 4.037 4.724 19.130
Table 7 Estimates of first order genetic parameters for fruit sugar content in melon

参量

Parameter

模型

Model

世代

Generation

二阶遗传参数值 Second order genetic parameter value
σ p 2 σ e 2 σ m g 2 σ p g 2 h m g 2 h p g 2

果糖含量

Fructose content

E-0 B1 5.056 2.058 2.716 0.282 0.569 0.059
B2 8.164 2.058 4.282 1.824 0.543 0.231
F2 22.038 2.058 18.634 1.346 0.857 0.062
葡萄糖含量Glucose content E-1 B1 2.627 0.596 2.031 0.000 0.773 0.000
B2 6.340 0.596 5.655 0.089 0.852 0.013
F2 6.034 0.596 5.438 0.000 0.862 0.000

蔗糖含量

Sucrose content

E-1 B1 8.770 3.055 5.715 0.000 0.652 0.000
B2 157.492 3.055 126.412 28.025 0.786 0.174
F2 83.403 3.055 80.348 0.000 0.927 0.000

总糖含量

Total sugar content

E-1 B1 18.779 6.947 11.832 0.000 0.630 0.000
B2 134.216 6.947 91.003 36.266 0.647 0.258
F2 105.272 6.947 94.914 3.411 0.850 0.031
Table 8 Estimates of second order genetic parameters for fruit sugar content in melon
[1]   WANG Y , WYLLIE S G , LEACH D N . Chemical changes during the development and ripening of the fruit of Cucumis melo (cv. Makdimon).Journal of Agricultural and Food Chemistry, 1996,44(1):210-216.
[2]   PARIS M K , ZALAPA J E , MCCREIGHT J D , et al . Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm.Molecular Breeding, 2008,22(3):405-419.
[3]   潜宗伟,唐晓伟,吴震,等 .甜瓜不同品种类型芳香物质和营养品质的比较分析.中国农学通报,2009,25(12):165-171.
QIAN Z W , TANG X W , WU Z , et al . Comparison of the aromatic compounds and nutritional quality among different types of melon fruits. Chinese Agricultural Science Bulletin, 2009,25(12):165-171. (in Chinese with English abstract)
[4]   VILLANUEVA M J , TENORIO M D , ESTEBAN M A , et al . Compositional changes during ripening of two cultivars of muskmelon fruits. Food Chemistry, 2004,87(2):179-185.
[5]   陈克农,盛云燕,朱子成 .不同甜瓜品种含糖量差异分析.北方园艺,2012(10):35-38.
CHEN K N , SHENG Y Y , ZHU Z C . Variance analysis of sugar content in melon. Northern Horticulture, 2012(10):35-38. (in Chinese with English abstract)
[6]   高美玲,袁成志,汪晓霞 .不同甜瓜品种资源糖酸组分含量及其相关性.江苏农业科学,2013,41(3):134-135.
GAO M L , YUAN C Z , WANG X X . Content and correlation of sugar and acid components in different melon varieties. Jiangsu Agricultural Sciences, 2013,41(3):134-135. (in Chinese)
[7]   叶红霞,吕律,王同林,等 .不同变种甜瓜果实发育过程中蔗糖代谢差异的研究.核农学报,2019,33(10):1959-1966.
YE H X , Lü L , WANG T L , et al . Studies on sucrose metabolism of melon belonging to different varieties during fruit growth and maturation. Acta Agriculturae Nucleatae Sinica, 2019,33(10):1959-1966. (in Chinese with English abstract)
[8]   BURGER Y , SAAR U , KATZIR N , et al . A single recessive gene for sucrose accumulation in Cucumis melo fruit. Journal of the American Society for Horticultural Science. American Society for Horticultural Science, 2002,127(6):938-943.
[9]   MONFORTE A J , OLIVER M , GONZALO M J , et al . Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theoretical and Applied Genetics, 2004,108(4):750-758.
[10]   HAREL-BEJA R , TZURI G , PORTONOY V , et al . A genetic map of melon highly enriched with fruit quality QTLs and EST markers including sugar and carotenoid metabolism genes. Theoretical and Applied Genetics, 2010,121(3):511-533.
[11]   YONG S S , PARK S D , KIM J H . Influence of pollination methods on fruit development and sugar contents of oriental melon (Cucumis melo L. cv. Sagyejeol-Ggul). Scientia Horticulturae, 2007,112(4):388-392.
[12]   MARTUSCELLI M , MATTIA C D , STAGNARI F , et al . Influence of phosphorus management on melon (Cucumis melo L.) fruit quality. Journal of the Science of Food & Agriculture, 2016,96(8):2715-2722.
[13]   石瑜,王敬民,叶红霞,等 .CPPU对网纹甜瓜果实生长发育和品质的影响.植物生理学报,2017,53(12):2229-2234.
SHI Y , WANG J M , YE H X , et al . Effects of CPPU on fruit growth, development and quality of netted melon. Plant Physiology Journal, 2017,53(12):2229-2234. (in Chinese with English abstract)
[14]   管学玉 .网纹甜瓜品质形成特点的研究.杭州:浙江大学,2006.
GUAN X Y . Studies on developmental characteristics of fruit quality of netted muskmelon (Cucumis melo L.var.reticulatus Naud). Hangzhou: Zhejiang University, 2006. (in Chinese with English abstract)
[15]   朱勇,臧全宇,吴茜茜,等 .甜瓜中糖的高效液相色谱测定与分析.浙江农业科学,2012(7):1014-1016.
ZHU Y , ZANG Q Y , WU Q Q , et al . Determination and analysis of sugar in melon by high performance liquid chromatography. Journal of Zhejiang Agricultural Sciences, 2012(7):1014-1016. (in Chinese)
[16]   张红,王怀松,贺超兴,等 .甜瓜糖酸性状的遗传研究.园艺学报,2009,36(7):989-996.
ZHANG H , WANG H S , HE C X , et al . Genetic study on sugar and sour traits of melon (Cucumis melo L.). .Acta Horticulturae Sinica, 2009,36(7):989-996. (in Chinese with English abstract)
[17]   曹锡文,刘兵,章元明 .植物数量性状分离分析Window软件SEA的研制.南京农业大学学报,2013,36(6):1-6.
CAO X W , LIU B , ZHANG Y M . SEA: a software package of segregation analysis of quantitative traits in plants. Journal of Nanjing Agricultural University, 2013,36(6):1-6. (in Chinese with English abstract)
[18]   HAYMAN B I . The analysis of variance of diallel tables. Biometrics, 1954,10(2):235-244.
[19]   GRIFFING B . Concept of general and specific combing ability in relation to diallel crossing system. Australian Journal of Biological Sciences, 1956,9:463-493.
[20]   MATHER K , JINKS J L . Introduction to biometrical genetics. London, UK: Chapman and Hall, 1977.
[21]   盖钧镒,章元明,王健康 .植物数量性状遗传体系.北京:科学出版社,2003.
GAI J Y , ZHANG Y M , WANG J K . Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. (in Chinese )
[22]   高美玲,栾非时,朱子成 .甜瓜重组自交系群体第1雌花开花期遗传分析.中国蔬菜,2012(22):24-29.
GAO M L , LUAN F S , ZHU Z C . Genetic analysis of flowering stage of the first female flower of recombinant inbred lines in melon. China Vegetables, 2012(22):24-29. (in Chinese with English abstract)
[23]   高美玲,袁成志,王玉书 .甜瓜叶面积RIL群体主基因+多基因混合遗传模型分析.东北农业大学学报,2014,45(3): 46-51.
GAO M L , YUAN C Z , WANG Y S . Genetic analysis of leaf area in melon (Cucumis melo L.) with major gene plus polygene mixed genetic model by using recombinant inbred lines (RILs) population. Journal of Northeast Agricultural University, 2014,45(3):46-51. (in Chinese with English abstract)
[24]   齐振宇,李俊星,邹晓霞,等 .甜瓜株型性状的遗传分析.农业生物技术学报,2015,23(3):302-310.
QI Z Y , LI J X , ZOU X X , et al . Genetic analysis of plant architecture traits in melon (Cucumis melo L.). Journal of Agricultural Biotechnology, 2015,23(3):302-310. (in Chinese with English abstract)
[25]   栾非时,王凤娇,高鹏,等 .西瓜果实可溶性糖含量的遗传分析.东北农业大学学报,2014,45(9):25-33.
LUAN F S , WANG F Q , GAO P , et al . Genetic analysis of watermelon fruit soluble sugar contents. Journal of Northeast Agricultural University, 2014,45(9):25-33. (in Chinese with English abstract)
[26]   李光庆,姚雪琴,刘春睛,等 .花椰菜内叶盖球性状的主基因+多基因遗传分析.上海农业学报,2017,33(5):1-7.
LIU G Q , YAO X Q , LIU C Q , et al . Analysis on cauliflower’s trait for inner leaves to cover curd by means of mixed major gene plus polygene genetic model. Acta Agriculturae Shanghai, 2017,33(5):1-7. (in Chinese with English abstract)
[27]   李洪戈,张丽萍,伍晓明 .甘蓝型油菜茎秆强度性状的主基因+多基因遗传分析.中国油料作物学报,2018,40(1):10-17.
LI H G , ZHANG L P , WU X M . Genetics of stem strength in Brassica napus in mixed model of major gene and polygene. Chinese Journal of Oil Crop Sciences, 2018,40(1):10-17. (in Chinese with English abstract)
[28]   刘新春,冯宗云 .大麦籽粒阿拉伯木聚糖的主基因+多基因遗传模型分析.华北农学报,2018,33(3):119-128.
LIU X C , FENG Z Y . Mixed major gene plus polygene inheritance model analysis for grain arabinoxylan in barley. Acta Agriculturae Boreali-Sinica, 2018,33(3):119-128. (in Chinese with English abstract)
[29]   刘炜,刘行,丁小霞,等 .花生中白藜芦醇含量的主基因+多基因遗传分析.山西农业科学,2018,46(12):1990-1992,2056.
LIU W , LIU X , DING X X , et al . A genetic analysis of resveratrol content in peanut by major gene plus polygene. Journal of Shanxi Agricultural Sciences, 2018,46(12):1990-1992,2056. (in Chinese with English abstract)
[30]   林碧英,高山,林峰 .甜瓜可溶性固形物含量的遗传表现与基因效应分析.中国瓜菜,2007(1):4-6.
LIN B Y , GAO S , LIN F . Analysis of genetic effects for soluble solids content in melon. China Cucurbits and Vegetables, 2007(1):4-6. (in Chinese with English abstract)
[31]   张宁,张显,张勇,等 .甜瓜远缘群体果实糖含量相关性状遗传分析.植物遗传资源学报,2014,15(5):932-939.
ZHANG N , ZHANG X , ZHANG Y , et al . Genetic analysis of fruit sugar content correlated traits in interspecific population of melon. Journal of Plant Genetic Resources, 2014,15(5):932-939. (in Chinese with English abstract)
[1] TIAN Ping, LI Jianshe, GAO Yanming. Effects of brackish water irrigation on tomato yield and fruit sucrose metabolism in sunlight greenhouse[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 667-677.
[2] SHAN Ying, LIU Ziqi, SHI Xingfen, LI Guowei, CHEN Cong, LUO Hao, LIU Yajie, FANG Weihuan, LI Xiaoliang. Molecular characteristic analysis of porcine epidemic diarrhea virus S gene in Zhejiang and surrounding areas[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 610-618.
[3] MIAO Huiying, CHEN Hao, CHANG Jiaqi, WANG Mengyu, ZHANG Fen, SUN Bo, WANG Qiaomei. Effects of glucose and methyl jasmonate treatments on glucosinolate accumulation and antioxidant attributes in Chinese kale sprouts[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 327-334.
[4] HOU Yong, HOU Yanbin, YAO Lei, DAI Binyang, QIAN Lichun, FAN Jinghui. Effects of chilled trash fish and different carbohydrate levels in puffed feed on growth performance and glucose metabolism of snakehead[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 199-208.
[5] YUE Haimei, ZHUANG Hua, PAN Zhaohui, GONG Wenfeng. Diversity and phylogenetic analysis of Chaetomium fungus from southeastern Tibet[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 431-440.
[6] GU Chao, ZHANG Qichun, XU Chenguang. Resistant bacteria subsisting on antibiotic in soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 582-.
[7] CAI Wenwen, LI Duo. Absorption and metabolism of fructose and its relationship with human health[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 265-272.
[8] ZHOU Lingyun, GAO Suping, CHEN Feng. Action mechanism of sucrose and photoperiod on bulblet enlargement of Lilium sargentiae[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 435-441.
[9] Huang Heru, Wang Shanshan, Ni Xiaofeng, Chen Riping, Zhang Jiali, Chen Yixiang, Shen Shengrong. Intervention and regulation effect of Haematococcus pluvialis extract on blood glucose and lipid of diabetic mice.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 641-649.
[10] Tong Jiepeng, Tong Chuan, Wang Yan, Ren Sanjuan, Shen Shengquan. Character identification, genetic analysis and gene mapping of a low cellulose mutant LCM527-1 in rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 261-268.
[11] Li Qianyan, Lu Xiangfeng, Zhang Pengcheng, Sun Lingyan, Liu Yu, Ma Xiaohang* . Enzymatic system of glucose metabolism in Gluconobacter oxydans strain DHA3-9.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 133-140.
[12] REN Sanjuan, SUN Chu, TONG Chuan, ZHAO Fei, SHU Qingyao, SHEN Shengquan. Genetic analysis and gene mapping of a rice spikelet degradation mutant (spd-hp73)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 267-273.
[13] LIU Yonghua1, YANG Xinqin2, WU Xiaohua1, WANG Baogen1, XU Pei1, LI Guojing1. Effects of the liquid of decomposed asparagus bean stubs on sucrose metabolism and antioxidant enzyme activities in hypocotyls of different asparagus bean cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 459-466.
[14] ZHANG Nan, DU Baoming, JI Mengcheng. Sterilization method and sucrose concentration selection for initial culture of Haplocladium microphyllum gametophyte.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 288-292.
[15] XU Xue,ZHAO Jun,WANG Chuan-qing,WANG Ze-lin,YANG Xia,ZHOU Xin,DILIBAIER Amuti. Variation analysis of S1 gene of avian infectious bronchitis virus epidemicstrains isolated from chicken flocksin Henan Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(3): 263-274.