Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (2): 231-243    DOI: 10.3785/j.issn.1008-9209.2023.12.082
Research Articles     
Responses of soil arbuscular mycorrhizal fungi to rotational grazing in mixed-sown artificial grasslands
Yuan WANG1,2(),Yang MI1,2,Rong GUO1,2,Yu ZHANG1,2,Xia TIAN1,2,Zhanjun WANG3,Qi JIANG3,Hongqian YU3,Bo JI3,Kun MA1,2()
1.School of Ecology and Environment, Ningxia University, Yinchuan 750021, Ningxia, China
2.Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China of Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
3.Institute of Forest and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750001, Ningxia, China
Download: HTML   HTML (   PDF(2243KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study investigated the impact mechanism of rotational grazing on vegetation communities and soil arbuscular mycorrhizal (AM) fungal communities in mixed-sown artificial grassland ecosystems. Taking the mixed-sown artificial grasslands in Yanchi County of Ningxia as the experimental subject, we set up three different patterns of mixed-sown combinations using a one-way randomized block design: T1 (Bromus inermis Leyss.+Psathyrostachys juncea Nevski+Festuca rubra+Medicago sativa L.+Cichorium intybus L.), T2 (Elymus nutans Griseb.+Psathyrostachys juncea Nevski+Poa annua L.+Medicago sativa L.+Astragalus cicer L.), and T3 (Agropyron cristatum+Psathyrostachys juncea Nevski+Agropyron mongolioum Keng+Medicago sativa L.). Illumina high-throughput sequencing and bioinformatics analysis were conducted to investigate the differences of AM fungal communities in the three mixed-sown artificial grassland ecosystems under grazing disturbance, and to analyze the relationships among the vegetation communities, soil physicochemical properties and AM fungal communities. The results indicated that two consecutive years of rotational grazing had a significant impact on the biomass of the vegetation communities. Compared with those after the first year of rotational grazing, the relative importance values of the leguminous vegetation communities decreased, but the relative importance values of the gramineous vegetation communities increased by 51.16%, 81.25% and 33.33%, respectively. Throughout both years, Glomus and Paraglomus were the dominant genera of AM fungi in the soil. Compared with that after the first year of rotational grazing, the Chao 1 index of the soil AM fungal community in the T1 treatment significantly decreased by 12.35% after two consecutive years of rotational grazing. Nevertheless, the Chao 1 index, Shannon-Wiener index, evenness index and species number of the soil AM fungal community in the T3 treatment significantly increased by 20.73%, 12.80%, 7.69% and 31.16%, respectively (P<0.05), which indicates that the soil AM fungal community is more sensitive to grazing intensity during the T3 treatment. The soil AM fungal community structures spatially overlapped between the T1 and T2 treatments and separated between the T1 and T3 treatments with the increase of rotational grazing years. The environmental factors attributed to the alteration of AM fungal communities shifted from available phosphorus (p=0.006) and alkali-hydrolyzable nitrogen (p=0.016) to vegetation community biomass (p=0.036) with the increase of rotational grazing years. After two consecutive years of rotational grazing disturbance, the effects of soil nutrients on soil AM fungal community richness diminished, whereas the effects of vegetation community diversity and biomass on soil AM fungal community richness and composition enhanced. In summary, different types of mixed-sown artificial grassland vegetation communities and soil AM fungal communities exhibit different response characteristics to rotational grazing. Among the three types of mixed-sown artificial grasslands, the combination of T3 is superior.



Key wordsmixed-sown artificial grasslands      grassland ecosystems      arbuscular mycorrhizal fungi      diversity      rotational grazing     
Received: 08 December 2023      Published: 30 April 2024
CLC:  S154.1  
Corresponding Authors: Kun MA     E-mail: 974741594@qq.com;makun0411@163.com
Cite this article:

Yuan WANG,Yang MI,Rong GUO,Yu ZHANG,Xia TIAN,Zhanjun WANG,Qi JIANG,Hongqian YU,Bo JI,Kun MA. Responses of soil arbuscular mycorrhizal fungi to rotational grazing in mixed-sown artificial grasslands. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 231-243.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.12.082     OR     https://www.zjujournals.com/agr/Y2024/V50/I2/231


人工混播草地土壤丛枝菌根真菌对轮牧的响应

为探究轮牧对人工混播草地生态系统中植被群落及土壤丛枝菌根(arbuscular mycorrhiza, AM)真菌群落的影响机制,以宁夏盐池县人工混播草地为试验对象,采用单因素随机区组设计,设置T1(无芒雀麦+新麦草+紫羊茅+苜蓿+菊苣)、T2(垂穗披碱草+新麦草+早熟禾+苜蓿+鹰嘴紫云英)、T3(扁穗冰草+新麦草+蒙古冰草+苜蓿)3种混播组合模式,并通过Illumina高通量测序和生物信息学分析,开展轮牧影响下3种人工混播草地土壤AM真菌群落差异性研究,分析人工混播草地生态系统中植被-土壤-AM真菌群落的相互作用关系。结果表明:连续2年轮牧对植被群落生物量产生了显著影响,与轮牧第1年相比,豆科植被群落的相对重要值降低,但禾本科植被群落的相对重要值分别增加了51.16%、81.25%和33.33%。土壤AM真菌中球囊霉属和类球囊霉属为优势属;与轮牧第1年相比,连续轮牧2年后,T1处理的土壤AM真菌群落Chao 1指数较第1年显著降低了12.35%,T3处理的土壤AM真菌群落Chao 1指数、香农-维纳指数、均匀度指数和物种数较第1年分别提升了20.73%、12.80%、7.69%和31.16%(P<0.05),说明T3处理的土壤AM真菌群落对轮牧的响应更加敏感。随轮牧年限增加,T1与T2处理的土壤AM真菌群落组成相似性增加,T1与T3处理的土壤AM真菌群落组成相似性差异较大。连续轮牧2年后,土壤养分对AM真菌群落丰富度的作用强度减弱,但植被群落多样性和植被群落生物量对AM真菌群落丰富度及其组成的作用强度增强;驱动AM真菌群落变化的环境因子由土壤有效磷(p=0.006)和碱解氮(p=0.016)转变为植被群落生物量(p=0.036)。综上所述,不同类型人工混播草地植被群落和土壤AM真菌群落对轮牧表现出不同的响应特征,其中以T3混播组合处理的效果较好。


关键词: 人工混播草地,  草地生态系统,  丛枝菌根真菌,  多样性,  轮牧 

处理

Treatment

植被种类及种子播量占比

Types of vegetation and proportions of seed sowing amount

T1无芒雀麦(60%)+新麦草(15%)+紫羊茅(10%)+苜蓿(10%)+菊苣(5%)
T2垂穗披碱草(60%)+新麦草(15%)+早熟禾(10%)+苜蓿(10%)+鹰嘴紫云英(5%)
T3扁穗冰草(60%)+新麦草(15%)+蒙古冰草(15%)+苜蓿(10%)
Table 1 Types of vegetation and proportions of seed sowing amount in mixed-sown artificial grasslands

处理

Treatment

年份

Year

相对重要值 Relative importance value

香农-维纳指数

Shannon-Weiner index

均匀度指数

Evenness index

生物量

Biomass/(g/m2)

豆科

Leguminosae

禾本科

Gramineae

T120210.57±0.05Aa0.43±0.05Ba0.93±0.02Ba0.84±0.02Aa68.07±3.13Aa
20220.35±0.10Ba0.65±0.10Aa1.17±0.10Aa0.89±0.02Aa277.06±148.92Ab
T220210.68±0.15Aa0.32±0.15Aa0.80±0.15Aa0.78±0.10Aa83.66±14.39Ba
20220.42±0.31Aa0.58±0.31Aa0.69±0.05Ac0.80±0.10Aa197.79±49.53Ab
T320210.55±0.10Aa0.45±0.10Aa0.89±0.06Aa0.87±0.03Aa61.13±19.94Ba
20220.40±0.21Aa0.60±0.21Aa0.92±0.08Ab0.88±0.04Aa639.70±131.84Aa
Table 2 Effects of rotational grazing on the importance value and diversity index of vegetation communities in mixed-sown artificial grasslands
Fig. 1 Venn diagram of OTU distribution of soil AM fungi in mixed-sown artificial grasslands under the rotational grazing influence
Fig. 2 Effects of rotational grazing on the relative abundance of soil AM fungal species in mixed-sown artificial grasslandsSingle asterisk (*) indicates significant differences among different treatments at the 0.05 probability level.

处理

Treatment

年份

Year

Chao 1指数

Chao 1 index

香农-维纳指数

Shannon-Weiner index

均匀度指数

Evenness index

物种数

Observed_species

T120211 002.21±114.84Aa6.87±0.38Aa0.70±0.04Aa892.55±105.35Aa
2022878.40±125.94Bb6.78±0.75Aa0.70±0.07Aa850.49±118.91Aab
T22021978.26±167.16Aa6.52±0.63Aab0.67±0.06Aab877.89±143.24Aa
2022852.06±265.54Ab6.60±1.28Aa0.69±0.12Aa818.25±253.79Ab
T32021851.61±130.27Bb6.17±0.86Bb0.65±0.08Bb749.16±122.12Bb
20221 028.15±209.77Aa6.96±0.57Aa0.70±0.04Aa982.63±197.24Aa
Table 3 Effects of rotational grazing on soil AM fungal community richness and alpha diversity in mixed-sown artificial grasslands
Fig. 3 Effects of rotational grazing on soil AM fungal community beta diversity in mixed-sown artificial grasslands
Fig. 4 Redundancy analysis of soil AM fungal community diversity and environmental factors in mixed-sown artificial grasslands under the rotational grazing influenceTP: Total phosphorus; TN: Total nitrogen; pH: Pondus hydrogenii; AK: Available potassium; TC: Total carbon; AN: alkali-hydrolyzable nitrogen; AP: Available phosphorus; SWC: Soil water content; VB: Vegetation community biomass; D: Vegetation community Simpson index; E: Vegetation community evenness index; H: AM fungal Shannon-Wiener index; Chao 1: AM fungal Chao 1 index; AMC: AM fungal community composition.
Fig. 5 Structural equation model of soil AM fungal diversity and soil environmental factors and vegetation communities in mixed-sown artificial grasslandsArrows indicate the direction of the impact effect, and the values above them represent the normalization coefficients for each pathway. Double asterisks (**) and triple asterisks (***) indicate extremely significant correlations at the 0.01 and 0.001 probability levels, respectively.
[1]   白永飞,黄建辉,郑淑霞,等.草地和荒漠生态系统服务功能的形成与调控机制[J].植物生态学报,2014,38(2):93-102. DOI:10.3724/SP.J.1258.2014.00009
BAI Y F, HUANG J H, ZHENG S X, et al. Drivers and regulating mechanisms of grassland and desert ecosystem services[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 93-102. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00009
[2]   XU L H, YAO B Q, WANG W Y, et al. Effects of plant species richness on 13C assimilate partitioning in artificial grasslands of different established ages[J]. Scientific Reports, 2017, 7: 40307. DOI: 10.1038/srep40307
doi: 10.1038/srep40307
[3]   LI W, WANG J L, ZHANG X J, et al. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau[J]. Ecological Engineering, 2018, 111: 134-142. DOI: 10.1016/j.ecoleng.2017.10.013
doi: 10.1016/j.ecoleng.2017.10.013
[4]   邢云飞,王晓丽,刘永琦,等.不同建植年限人工草地植物群落和土壤有机碳氮特征[J].草地学报,2020,28(2):521-528. DOI:10.11733/j.issn.1007-0435.2020.02.028
XING Y F, WANG X L, LIU Y Q, et al. Characteristics of plant community and soil organic carbon and nitrogen in artificial grassland with different establishment years[J]. Acta Agrestia Sinica, 2020, 28(2): 521-528. (in Chinese with English abstract)
doi: 10.11733/j.issn.1007-0435.2020.02.028
[5]   孙华方,李希来,金立群,等.黄河源区人工草地植被群落和土壤养分变化[J].水土保持通报,2019,39(3):25-30. DOI:10.13961/j.cnki.stbctb.2019.03.005
SUN H F, LI X L, JIN L Q, et al. Variation of vegetation community and soil nutrients of artificial grassland in source area of Yellow River[J]. Bulletin of Soil and Water Conserva-tion, 2019, 39(3): 25-30. (in Chinese with English abstract)
doi: 10.13961/j.cnki.stbctb.2019.03.005
[6]   XU Y D, DONG S K, GAO X X, et al. Aboveground community composition and soil moisture play determining roles in restoring ecosystem multifunctionality of alpine steppe on Qinghai-Tibetan Plateau[J]. Agriculture, Ecosystems & Environment, 2021, 305: 107163. DOI: 10.1016/j.agee.2020.107163
doi: 10.1016/j.agee.2020.107163
[7]   TEAGUE W R, DOWHOWER S L, BAKER S A, et al. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie[J]. Agriculture, Ecosystems & Environment, 2011, 141(3/4): 310-322. DOI: 10.1016/j.agee.2011.03.009
doi: 10.1016/j.agee.2011.03.009
[8]   DE LA MOTTE L G, MAMADOU O, BECKERS Y, et al. Rotational and continuous grazing does not affect the total net ecosystem exchange of a pasture grazed by cattle but modifies CO2 exchange dynamics[J]. Agriculture, Ecosystems & Environment, 2018, 253: 157-165. DOI: 10.1016/j.agee.2017.11.011
doi: 10.1016/j.agee.2017.11.011
[9]   王晓芳,马红彬,沈艳,等.不同轮牧方式对荒漠草原植物群落特征的影响[J].草业学报,2019,28(4):23-33. DOI:10.11686/cyxb2018246
WANG X F, MA H B, SHEN Y, et al. Effects of different rotational grazing patterns on plant community characteristics in desert steppe grassland[J]. Acta Prataculturae Sinica, 2019, 28(4): 23-33. (in Chinese with English abstract)
doi: 10.11686/cyxb2018246
[10]   GHORBANI A, DADJOU F, MOAMERI M, et al. Effect of grazing exclusion on soil and vegetation characteristics in desert steppe rangelands: a case study from north-western Iran[J]. Arid Land Research and Management, 2021, 35(2): 213-229. DOI: 10.1080/15324982.2020.1850542
doi: 10.1080/15324982.2020.1850542
[11]   CHENG H G, WANG J Y, TU C L, et al. Arbuscular mycorrhizal fungi and biochar influence simazine decom-position and leaching[J]. GCB Bioenergy, 2021, 13(4): 708-718. DOI: 10.1111/gcbb.12802
doi: 10.1111/gcbb.12802
[12]   JIA Y Y, VAN DER HEIJDEN M, VALZANO-HELD A Y, et al. Mycorrhizal fungi mitigate nitrogen losses of an experimental grassland by facilitating plant uptake and soil microbial immobilization[J]. Pedosphere, 2023.
[13]   GIANINAZZI S, GOLLOTTE A, BINET M N, et al. Agro-ecology: the key role of arbuscular mycorrhizas in ecosystem services[J]. Mycorrhiza, 2010, 20(8): 519-530. DOI: 10.1007/s00572-010-0333-3
doi: 10.1007/s00572-010-0333-3
[14]   VÁLYI K, RILLIG M C, HEMPEL S. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants[J]. New Phytologist, 2015, 205(4): 1577-1586. DOI: 10.1111/nph.13236
doi: 10.1111/nph.13236
[15]   FAN D D, JI M K, WU J S, et al. Grazing does not influence soil arbuscular mycorrhizal fungal diversity, but increases their interaction complexity with plants in dry grasslands on the Tibetan Plateau[J]. Ecological Indicators, 2023, 148: 110065. DOI: 10.1016/j.ecolind.2023.110065
doi: 10.1016/j.ecolind.2023.110065
[16]   SMITH S E, READ D J. Mycorrhizal Symbiosi[M]. 3rd ed. Amsterdam: Academic Press, 2008.
[17]   ŠMILAUER P, KOŠNAR J, KOTILÍNEK M, et al. Contrasting effects of host identity, plant community, and local species pool on the composition and colonization levels of arbuscular mycorrhizal fungal community in a temperate grassland[J]. New Phytologist, 2020, 225(1): 461-473. DOI: 10.1111/nph.16112
doi: 10.1111/nph.16112
[18]   张美庆,王幼珊,邢礼军.我国东、南沿海地区AM真菌群落生态分布研究[J].菌物系统,1998,17(3):274-277. DOI:10.13346/j.mycosystema.1998.03.017
ZHANG M Q, WANG Y S, XING L J. The ecological distribution of AM fungi community in south and east coast of China[J]. Mycosystema, 1998, 17(3): 274-277. (in Chinese with English abstract)
doi: 10.13346/j.mycosystema.1998.03.017
[19]   WARDLE D A, BONNER K I, BARKER G M. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores[J]. Functional Ecology, 2002, 16(5): 585-595. DOI: 10.1046/j.1365-2435.2002.00659.x
doi: 10.1046/j.1365-2435.2002.00659.x
[20]   鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[21]   SATO K, SUYAMA Y, SAITO M, et al. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis[J]. Grassland Science, 2005, 51(2): 179-181. DOI: 10.1111/j.1744-697X.2005.00023.x
doi: 10.1111/j.1744-697X.2005.00023.x
[22]   STEIN C, HARPOLE W S, SUDING K N. Transitions and invasion along a grazing gradient in experimental California grasslands[J]. Ecology, 2016, 97(9): 2319-2330. DOI: 10.1002/ecy.1478
doi: 10.1002/ecy.1478
[23]   CHEN Y, LUO H L, LIU X L, et al. Effect of restricted grazing time on the foraging behavior and movement of Tan sheep grazed on desert steppe[J]. Asian-Australasian Journal of Animal Sciences, 2013, 26(5): 711-715. DOI: 10.5713/ajas.2012.12556
doi: 10.5713/ajas.2012.12556
[24]   DONG L B, LI J W, ZHANG Y, et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the Loess Plateau[J]. Journal of Environmental Management, 2022, 302(Pt A): 113985. DOI: 10.1016/j.jenvman.2021.113985
doi: 10.1016/j.jenvman.2021.113985
[25]   GÜSEWELL S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266. DOI: 10.1111/j.1469-8137.2004.01192.x
doi: 10.1111/j.1469-8137.2004.01192.x
[26]   马晓颖,韦宝,代先林,等.羊尿施入对苜蓿-无芒雀麦混播草地氮转化和吸收的影响[J].草地学报,2023,31(12):3768-3774. DOI:10.11733/j.issn.1007-0435.2023.12.022
MA X Y, WEI B, DAI X L, et al. Effects of sheep urine addition on nitrogen conversion and absorption in mixed grassland of alfalfa and smooth brome[J]. Acta Agrestia Sinica, 2023, 31(12): 3768-3774. (in Chinese with English abstract)
doi: 10.11733/j.issn.1007-0435.2023.12.022
[27]   LYNCH J P, BROWN K M. Topsoil foraging: an architectural adaptation of plants to low phosphorus availability[J]. Plant and Soil, 2001, 237(2): 225-237. DOI: 10.1023/A:1013324727040
doi: 10.1023/A:1013324727040
[28]   张彩琴,张军,李茜若.草地植被生物量动态研究视角与研究方法评述[J].生态学杂志,2015,34(4):1143-1151. DOI:10.13292/j.1000-4890.20150311.020
ZHANG C Q, ZHANG J, LI X R. A review on the research perspectives and methods for grassland vegetation biomass dynamics[J]. Chinese Journal of Ecology, 2015, 34(4): 1143-1151. (in Chinese with English abstract)
doi: 10.13292/j.1000-4890.20150311.020
[29]   杨晨晨,陈宽,周延林,等.放牧对锡林郭勒草甸草原群落特征及生产力的影响[J].中国草地学报,2021,43(5):58-66. DOI:10.16742/j.zgcdxb.20200242
YANG C C, CHEN K, ZHOU Y L, et al. Effects of grazing on community characteristics and productivity of Xilingol meadow steppe[J]. Chinese Journal of Grassland, 2021, 43(5): 58-66. (in Chinese with English abstract)
doi: 10.16742/j.zgcdxb.20200242
[30]   傅理,陆颖,谢应忠,等.短期休牧对荒漠草原区家庭牧场植被及土壤性质的影响[J].浙江大学学报(农业与生命科学版),2019,45(5):563-573. DOI:10.3785/j.issn.1008-9209.2019.03.081
FU L, LU Y, XIE Y Z, et al. Impact of short-term rest-grazing on vegetation and soil characteristics of family ranch in desert steppe area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 563-573. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2019.03.081
[31]   LIANG Y, HAN G D, ZHOU H, et al. Grazing intensity on vegetation dynamics of a typical steppe in northeast Inner Mongolia[J]. Rangeland Ecology & Management, 2009, 62(4): 328-336. DOI: 10.2111/08-167.1
doi: 10.2111/08-167.1
[32]   陈昕,呼延钦,张玉进,等.宁夏盐池半干旱沙化地区禾本科牧草引种试验[J].宁夏农学院学报,2004,25(3):32-35. DOI:10.3969/j.issn.1673-0747.2004.03.009
CHEN X, HUYAN Q, ZHANG Y J, et al. Introduction and cultivation of gramineous grasses in the semiarid sand area of Yanchi, Ningxia[J]. Journal of Ningxia Agricultural College, 2004, 25(3): 32-35. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-0747.2004.03.009
[33]   卢尧尧,张静,李耀明,等.土著丛枝菌根真菌对垂穗披碱草和冷地早熟禾生长及竞争的影响[J].草业科学,2020,37(9):1688-1697. DOI:10.11829/j.issn.1001-0629.2019-0614
LU Y Y, ZHANG J, LI Y M, et al. Effects of native arbuscular mycorrhizal fungi on the growth and competition of Elymus nutans and Poa crymophila [J]. Pratacultural Science, 2020, 37(9): 1688-1697. (in Chinese with English abstract)
doi: 10.11829/j.issn.1001-0629.2019-0614
[34]   孙林,任秀珍,格根图,等.紫花苜蓿茎叶水浸提液对2种禾本科牧草的化感效应[J].西北农林科技大学学报(自然科学版),2013,41(12):49-53. DOI:10.13207/j.cnki.jnwafu.2013.12.088
SUN L, REN X Z, GE G T, et al. Allelopathic effect of aqueous extracts from alfalfa stem and leaf on two gramineous forages[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(12): 49-53. (in Chinese with English abstract)
doi: 10.13207/j.cnki.jnwafu.2013.12.088
[35]   WANG Q, BAO Y Y, NAN J, et al. AM fungal diversity and its impact across three types of mid-temperate steppe in Inner Mongolia, China[J]. Mycorrhiza, 2020, 30(1): 97-108. DOI: 10.1007/s00572-019-00926-x
doi: 10.1007/s00572-019-00926-x
[36]   ZANGARO W, ROSTIROLA L V, DE SOUZA P B, et al. Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil[J]. Mycorrhiza, 2013, 23(3): 221-233. DOI: 10.1007/s00572-012-0464-9
doi: 10.1007/s00572-012-0464-9
[37]   BEVER J D, RICHARDSON S C, LAWRENCE B M, et al. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism[J]. Ecology Letters, 2009, 12(1): 13-21. DOI: 10.1111/j.1461-0248.2008.01254.x
doi: 10.1111/j.1461-0248.2008.01254.x
[38]   HAZARD C, GOSLING P, VAN DER GAST C J, et al. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale[J]. The ISME Journal, 2013, 7(3): 498-508. DOI: 10.1038/ismej.2012.127
doi: 10.1038/ismej.2012.127
[39]   KIERS E T, DUHAMEL M, BEESETTY Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis[J]. Science, 2011, 333(6044): 880-882. DOI: 10.1126/science.1208473
doi: 10.1126/science.1208473
[40]   ZHENG J Q, CUI M M, WANG C, et al. Elevated CO2, warming, N addition, and increased precipitation affect different aspects of the arbuscular mycorrhizal fungal community[J]. Science of the Total Environment, 2022, 806(Pt 1): 150522. DOI: 10.1016/j.scitotenv.2021.150522
doi: 10.1016/j.scitotenv.2021.150522
[41]   李侠,叶诚诚,张俊伶,等.丛枝菌根真菌侵染指标与植物促生效应相关性分析[J].中国农业大学学报,2021,26(10):41-53. DOI:10.11841/j.issn.1007-4333.2021.10.05
LI X, YE C C, ZHANG J L, et al. Correlation analysis between arbuscular mycorrhizal fungi colonization indices and plant growth promoting effect[J]. Journal of China Agricultural University, 2021, 26(10): 41-53. (in Chinese with English abstract)
doi: 10.11841/j.issn.1007-4333.2021.10.05
[42]   YANG A, HAN W W, LI Y T, et al. Linkage of vegetation and abiotic attributes to grazing effects on biogeographical patterns of arbuscular mycorrhizal fungal communities in temperate grasslands[J]. Plant and Soil, 2022, 478(1/2): 479-490. DOI: 10.1007/s11104-022-05483-5
doi: 10.1007/s11104-022-05483-5
[43]   张娜,秦艳,金轲,等.放牧对典型草原群落特征及土壤物理性状的影响[J].中国草地学报,2020,42(4):91-100. DOI:10.16742/j.zgcdxb.20200011
ZHANG N, QIN Y, JIN K, et al. Effects of grazing on vegetation community and soil physical properties in typical steppe[J]. Chinese Journal of Grassland, 2020, 42(4): 91-100. (in Chinese with English abstract)
doi: 10.16742/j.zgcdxb.20200011
[44]   FU W, CHEN B D, RILLIG M C, et al. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland[J]. New Phytologist, 2022, 234(6): 2003-2017. DOI: 10.1111/nph.17692
doi: 10.1111/nph.17692
[45]   DE BEENHOUWER M, MULETA D, PEETERS B, et al. DNA pyrosequencing evidence for large diversity differences between natural and managed coffee mycorrhizal fungal communities[J]. Agronomy for Sustainable Development, 2015, 35(1): 241-249. DOI: 10.1007/s13593-014-0231-8
doi: 10.1007/s13593-014-0231-8
[46]   DICKIE I A, RICHARDSON S J, WISER S K. Ectomy-corrhizal fungal communities and soil chemistry in harvested and unharvested temperate Nothofagus rainforests[J]. Canadian Journal of Forest Research, 2009, 39(6): 1069-1079. DOI: 10.1139/x09-036
doi: 10.1139/x09-036
[47]   TENG J L, TIAN J, YU G R. Biogeographical patterns of arbuscular mycorrhizal fungi diversity in China’s grasslands[J]. Journal of Geographical Sciences, 2021, 31(7): 965-976. DOI: 10.1007/s11442-021-1880-6
doi: 10.1007/s11442-021-1880-6
[48]   EOM A H, WILSON G W T, HARTNETT D C. Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie[J]. Mycologia, 2001, 93(2): 233-242. DOI: 10.1080/00275514.2001.12063153
doi: 10.1080/00275514.2001.12063153
[49]   丁成翔,杨晓霞,董全民.青藏高原高寒草原放牧方式对植被、土壤及微生物群落的影响[J].草地学报,2020,28(1):159-169. DOI:10.11733/j.issn.1007-0435.2020.01.018
DING C X, YANG X X, DONG Q M. Effects of grazing patterns on vegetation, soil and microbial community in alpine grassland of Qinghai-Tibetan Plateau[J]. Acta Agrestia Sinica, 2020, 28(1): 159-169. (in Chinese with English abstract)
doi: 10.11733/j.issn.1007-0435.2020.01.018
[1] Xiaojiao MA,Mingyuan XUE,Huizeng SUN,Jianxin LIU. Changes in the composition and diversity of the rumen bacterial community in mid-lactation Holstein cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 578-590.
[2] Hongzhe SHEN,Chunnan LI,Qiaojuan FU,Hairui CUI. Analysis of germplasm resources by simple sequence repeat markers in Cymbidium hybridum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 21-28.
[3] Lianfei CAO,Ruiping LIN,Quanqing JIANG,Linjie FU. Monitoring on genetic diversity of Zhejiang Royal Jelly bee (Pinghu) using microsatellite loci and mitochondrial DNA[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 268-274.
[4] Shengyan SU,Linbing ZHANG,Haiyang LI,Can GAO,Xinjin HE,Can TIAN,Jianlin LI,Meiyao WANG,Yongkai TANG. Genetic diversity and structure analyses of largemouth bass (Micropterus salmoides) original and cultured populations based on microsatellite markers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 687-698.
[5] Ya XIN,Xianping FANG,Shuzhen WANG,Jianxin TONG,Wenguo LAI,Jianrong WANG,Hong YU. Comparison of simple sequence repeat (SSR) and sequence related amplified polymorphism (SRAP) markers for genetic diversity analysis in strawberry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 278-287.
[6] Fachun GUAN,Buyun BIAN,Lihua HUANG,Yongfeng Zhang,Xiaohui Li,Lichun ZHANG. Analysis on available production resources in the cropland system of agro-pastoral integration[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 221-228.
[7] Xu WEN,Xuzhou MA,Wei FAN,Xingxing LI,Yingliang ZHONG. Structural characteristics of phytoplankton functional groups in the young crab pond with different reed type rice acreages[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 85-94.
[8] LIANG Yanting, LIU Yuncai, GAO Yun, WANG Huabing, XU Yusong. Diversity analysis on gut microbiota of Glyphodes pyloalis Walker under high temperature[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 215-222.
[9] YUE Haimei, ZHUANG Hua, PAN Zhaohui, GONG Wenfeng. Diversity and phylogenetic analysis of Chaetomium fungus from southeastern Tibet[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 431-440.
[10] CAO Lianfei, GU Peipei, LIN Yuqing. Genetic diversity of Apis cerana cerana based on mitochondrial DNA in Lishui, Zhejiang, China.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 425-430.
[11] WANG Xing, SONG Naiping, YANG Xinguo. Response of community distribution and biodiversity of grassland plants to environmental factors based on a “3circles” paradigm[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 747-759.
[12] ZHANG Jun, XU Shenghua, WU Chuping,JIAO Jiejie, HUANG Yujie,GAO Hongdi, SHEN Aihua, YUAN Weigao, ZHU Jinru, GAO Zhihui, JIANG Bo. Influences of mountain closure on community composition of ecological service forest in Fuyang, Hangzhou,China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 607-.
[13] Zhang Jiao, Li Yuecheng, Zhang Dazhi. Species diversity of soil animals at different desert habitats in Baijitan region of Ningxia and its relationship with environmental factors[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 428-438.
[14] Lu Lianming, Cheng Baoping, Du Danchao, Hu Xiurong, Pu Zhanxu, Chen Guoqing. Genetic diversity of Lecanicillium lecanii and its pathogenicity against Diaphorina citri[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 34-43.
[15] Zhang Yuyang1, Wang Junfeng1, Sha Zhipeng1, Guan Fachun1,2*, Duan Jing1. Weeds biodiversity and maize growth in agro-pastoral integration system.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(6): 638-646.