Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (4): 578-590    DOI: 10.3785/j.issn.1008-9209.2022.06.291
Animal sciences & veterinary medicines     
Changes in the composition and diversity of the rumen bacterial community in mid-lactation Holstein cows
Xiaojiao MA(),Mingyuan XUE,Huizeng SUN,Jianxin LIU()
Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(3391KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study aimed to investigate the changes in the composition and diversity of the rumen bacterial community in mid-lactation Holstein cows. In trial 1, a total of 20 healthy high-yielding Holstein cows at mid-lactation were continuously fed with the same basal diet for eight weeks and the rumen contents were collected on the 7th day at weeks zero, four, and seven. In trial 2, a total of 30 healthy high-yielding Holstein cows at mid-lactation were supplemented with 20 g/d rumen-protected methionine to the basal diet, and the rumen contents were collected on the 7th day at weeks zero and eight. The rumen contents collected at different time points were analyzed for changes in composition and diversity of the bacterial community, as well as differences in functional stability in both trials. The results showed that there were no significant differences in the alpha diversity, beta diversity, and functional stability of rumen bacteria at different time points (P>0.05) in both trials. In trial 1, six and one differential bacteria, such as Actinobacteriota, Proteobacteria, Cyanobacteria, Chloroflexi, Synergistota, and Fibrobacterota, as well as Lachnospiraceae_NK3A20_group, were found in highly abundant bacteria at phylum and genus levels, respectively. In trial 2, three and one differential bacteria, such as Actinobacteriota, Spirochaetota, and Elusimicrobiota, as well as unclassified_f_Lachnospiraceae, were found in highly abundant bacteria at phylum and genus levels, respectively. It is indicated that the rumen bacterial community composition of Holstein cows at mid-lactation changed to a limited extent over time under the same feeding conditions, with no significant changes in their diversity and functional stability. Similar results were obtained when supplemented with rumen-protected methionine to the basal diet. In conclusion, the results suggested that the rumen microbial community composition and function of Holstein cows at mid-lactation were relatively stable, and there is no need to specifically consider the changes in rumen bacterial community structure and function along with lactation progress in the related experiments developed during the mid-lactation.



Key wordsHolstein dairy cows      mid-lactation      rumen bacteria      microbial diversity      functional stability     
Received: 29 June 2022      Published: 29 August 2023
CLC:  S823  
Corresponding Authors: Jianxin LIU     E-mail: 22017022@zju.edu.cn;liujx@zju.edu.cn
Cite this article:

Xiaojiao MA,Mingyuan XUE,Huizeng SUN,Jianxin LIU. Changes in the composition and diversity of the rumen bacterial community in mid-lactation Holstein cows. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 578-590.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.06.291     OR     https://www.zjujournals.com/agr/Y2023/V49/I4/578


泌乳中期荷斯坦奶牛瘤胃细菌群落组成与多样性变化

本研究旨在探究泌乳中期荷斯坦奶牛瘤胃细菌群落组成及其多样性的变化。共设置2个试验:试验1,选取20头泌乳中期健康高产荷斯坦奶牛,饲喂相同饲粮,持续8周,分别在第0、4、7周的第7天采集瘤胃内容物;试验2,选取30头泌乳中期健康高产荷斯坦奶牛,在基础饲粮的基础上补充20 g/d瘤胃保护蛋氨酸,持续8周,分别在第0、8周的第7天采集瘤胃内容物。分析2个试验在不同时间点采集到的瘤胃内容物的细菌群落组成与多样性变化,以及功能稳定性差异。结果发现:2个试验中,瘤胃细菌的α多样性、β多样性、功能稳定性在不同时间点之间都不存在显著差异(P>0.05)。试验1在高丰度细菌的门和属水平上分别发现6个与1个差异细菌,分别是放线菌门、变形菌门、蓝菌门、绿弯菌门、互养菌门、纤维杆菌门与Lachnospiraceae_NK3A20_group;试验2在高丰度细菌的门和属水平上分别发现3个与1个差异细菌,分别为放线菌门、螺旋体门、迷踪菌门与unclassified_f_Lachnospiraceae。由此可见,在相同的饲粮条件下,泌乳中期荷斯坦奶牛瘤胃细菌组成随时间变化的程度有限,其多样性与功能稳定性均未发生显著改变;在基础饲粮基础上补充瘤胃保护蛋氨酸时,得到的结果相似。综上所述,本研究表明,处于泌乳中期荷斯坦奶牛的瘤胃微生物群落组成和功能相对稳定,在奶牛泌乳中期开展相关试验时,无需特别考虑瘤胃细菌会随泌乳阶段进程出现群落结构和功能的改变。


关键词: 荷斯坦奶牛,  泌乳中期,  瘤胃细菌,  微生物多样性,  功能稳定性 

参数

Parameter

试验1 Trial 1试验2 Trial 2

第0周

Week

zero

第4周

Week

four

第7周

Week

seven

均值

标准误

SEM

p

p-value

第0周

Week

zero

第8周

Week

eight

均值

标准误

SEM

p

p-value

泌乳天数 Lactation day/d190218239141197
干物质采食量 DMI/(kg/d)25.626.024.30.370.1524.9a25.7b0.420.05
奶产量 Milk yield/(kg/d)
牛奶 Milk (M)36.4a34.6ab32.7b0.600.0435.435.60.430.61
乳脂矫正乳 FCM38.936.434.80.770.0738.4b40.6a0.810.01
乳成分 Milk composition
乳蛋白 Milk protein/%3.323.363.340.0260.763.52a3.46b0.0240.03
乳脂 Milk fat/%3.933.833.890.0800.904.03b4.37a0.110<0.01
乳糖 Milk lactose/%4.964.935.010.0200.305.115.130.0210.45
总固形物 Total solids/%12.9012.6712.790.0820.5512.90b13.22a0.1180.01
乳中尿素氮 MUN/(mg/dL)13.5ab14.1a12.3b0.300.0416.916.60.600.62
体细胞数 SCC/(103 mL-1)84.343.883.922.530.7168.057.714.020.47
饲料效率 Feed efficiency
M/DMI1.421.331.350.0220.211.421.390.0450.08
FCM/DMI1.521.401.420.0260.151.531.570.0630.90
Table 1 Production performances of experimental dairy cows

参数

Parameter

第0周

Week zero

第8周

Week eight

均值标准误

SEM

p

p-value

pH6.49a6.40b0.0350.02
NH3-N/(mg/dL)16.314.40.980.06
总挥发性脂肪酸 Total VFAs/(mmol/L)117.3120.04.540.56
各脂肪酸摩尔分数 Mole fraction of each fatty acid/%
乙酸 Acetate61.862.50.7840.38
丙酸 Propionate22.823.70.600.15
丁酸 Butyrate11.4a10.8b0.21<0.01
异丁酸 Isobutyrate1.20.80.330.24
戊酸 Valerate1.4a1.1b0.05<0.01
异戊酸 Isovalerate1.3a1.2b0.05<0.01
乙酸/丙酸 Acetate/propionate2.732.720.1300.95
Table 2 Rumen fermentation indexes of dairy cows (trial 2)

参数

Parameter

试验1 Trial 1试验2 Trial 2

第0周

Week zero

第4周

Week four

第7周

Week seven

均值标准误

SEM

p

p-value

第0周

Week zero

第8周

Week eight

均值标准误

SEM

p

p-value

Sobs指数

Sobs index

164.00171.90168.602.6920.58176.77169.606.0060.94

Shannon指数

Shannon index

2.843.003.140.0650.213.063.000.0530.83

Simpson指数

Simpson index

0.190.160.130.0120.150.140.160.0110.98

ACE指数

ACE index

166.90175.20172.902.7160.58181.67173.236.5720.91

Chao 1指数

Chao 1 index

166.40174.50172.002.6690.63181.03172.866.5910.81
Table 3 Alpha diversity indexes of rumen bacteria
Fig. 1 Beta diversity of rumen bacteria at genus level (trial 1)
Fig. 2 Differences in rumen bacteria among different time points (trial 1)Differential analysis of top 15 high abundant microorganisms at phylum (A) and genus (B) levels among different time points; C. LEfSe multi-level species difference discriminant analysis; D. LDA score distribution histograms for differential microorganisms (LDA score>2). Single asterisk (*), double asterisks (**), and triple asterisks (***) indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively.
Fig. 3 Temporal changes of attenuation value and buffering value in rumen bacterial flora (trial 1)
Fig. 4 Beta diversity of rumen bacteria at the genus level (trial 2)
Fig. 5 Differences in rumen bacteria between different time points (trial 2)Differential analysis of top 15 high abundant microorganisms at phylum (A) and genus (B) levels between different time points; C. LEfSe multi-level species difference discriminant analysis; D. LDA score distribution histograms for differential microorganisms (LDA score>3). Single asterisk (*) and double asterisks (**) indicate significant differences at the 0.05 and 0.01 probability levels, respectively.
Fig. 6 Temporal changes of attenuation value and buffering value in rumen bacterial flora (trial 2)
[1]   李子健.不同生理阶段奶牛瘤胃细菌菌群数量与多样性的比较研究[D].内蒙古,呼和浩特:内蒙古农业大学,2018. DOI:10.3969/j.issn.1006-267x.2018.08.018
LI Z J. Comparative study on rumen bacteria quantity and diversity of dairy cows in different physiological stages[D]. Hohhot, Inner Mongolia: Inner Mongolia Agricultural University, 2018. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-267x.2018.08.018
[2]   HOBSON P N, STEWART C S. The Rumen Microbial Ecosystem[M]. 2nd ed. Dordrecht, the Netherlands: Springer, 1997.
[3]   LIU C, MENG Q H, CHEN Y X, et al. Role of age-related shifts in rumen bacteria and methanogens in methane production in cattle[J]. Frontiers in Microbiology, 2017, 8: 1563. DOI: 10.3389/fmicb.2017.01563
doi: 10.3389/fmicb.2017.01563
[4]   董瑞阳.粗饲料组合对泌乳牛与干奶牛甲烷产量、瘤胃发酵模式及微生物菌群的影响[D].河南,郑州:河南农业大学,2014.
DONG R Y. Effects of roughage combinations on methane production, rumen fermentation patterns and microbial population of lactaing cows and dry cows[D]. Zhengzhou, Henan: Henan Agricultural University, 2014. (in Chinese with English abstract)
[5]   JEWELL K A, MCCORMICK C A, ODT C L, et al. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency[J]. Applied and Environmental Microbiology, 2015, 81(14): 4697-4710. DOI: 10.1128/AEM.00720-15
doi: 10.1128/AEM.00720-15
[6]   VIJAYAKUMAR M, PARK J H, KI K S, et al. The effect of lactation number, stage, length, and milking frequency on milk yield in Korean Holstein dairy cows using automatic milking system[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(8): 1093-1098. DOI: 10.5713/ajas.16.0882
doi: 10.5713/ajas.16.0882
[7]   BURDICK M, ZHOU M, GUAN L L, et al. Effects of medium-chain fatty acid supplementation on performance and rumen fermentation of lactating Holstein dairy cows[J]. Animal, 2022, 16(4): 100491. DOI: 10.1016/j.animal.2022.100491
doi: 10.1016/j.animal.2022.100491
[8]   TAXIS T M, WOLFF S, GREGG S J, et al. The players may change but the game remains: network analyses of ruminal microbiomes suggest taxonomic differences mask functional similarity[J]. Nucleic Acids Research, 2015, 43(20): 9600-9612. DOI: 10.1093/nar/gkv973
doi: 10.1093/nar/gkv973
[9]   NELSON M B, MARTINY A C, MARTINY J B H. Global biogeography of microbial nitrogen-cycling traits in soil[J]. PNAS, 2016, 113(29): 8033-8040. DOI: 10.1073/pnas.1601070113
doi: 10.1073/pnas.1601070113
[10]   LOUCA S, PARFREY L W, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272-1277. DOI: 10.1126/science.aaf4507
doi: 10.1126/science.aaf4507
[11]   ANANTHARAMAN K, BROWN C T, HUG L A, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system[J]. Nature Communications, 2016, 7: 13219. DOI: 10.1038/ncomms13219
doi: 10.1038/ncomms13219
[12]   ENG A, BORENSTEIN E. Taxa-function robustness in microbial communities[J]. Microbiome, 2018, 6: 45. DOI: 10.1186/s40168-018-0425-4
doi: 10.1186/s40168-018-0425-4
[13]   National Research Council. Nutrient Requirements of Dairy Cattle[M]. 7th Rev. ed. Washington D.C., USA: National Academies Press, 2001.
[14]   XIE Y Y, WU Z Z, WANG D M, et al. Nitrogen partitioning and microbial protein synthesis in lactating dairy cows with different phenotypic residual feed intake[J]. Journal of Animal Science and Biotechnology, 2019, 10: 54. DOI: 10.1186/s40104-019-0356-3
doi: 10.1186/s40104-019-0356-3
[15]   GU F F, LIANG S L, ZHU S L, et al. Multi-omics revealed the effects of rumen-protected methionine on the nutrient profile of milk in dairy cows[J]. Food Research International, 2021, 149: 110682. DOI: 10.1016/j.foodres.2021.110682
doi: 10.1016/j.foodres.2021.110682
[16]   LIANG S L, WU C Q, PENG W C, et al. Predicting daily dry matter intake using feed intake of first two hours after feeding in mid and late lactation dairy cows with fed ration three times per day[J]. Animals, 2021, 11(1): 104. DOI: 10.3390/ani11010104
doi: 10.3390/ani11010104
[17]   SHEN J S, CHAI Z, SONG L J, et al. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows[J]. Journal of Dairy Science, 2012, 95(10): 5978-5984. DOI: 10.3168/jds.2012-5499
doi: 10.3168/jds.2012-5499
[18]   HU W L, LIU J X, YE J A, et al. Effect of tea saponin on rumen fermentation in vitro[J]. Animal Feed Science and Technology, 2005, 120(3/4): 333-339. DOI: 10.1016/j.anifeedsci.2005.02.029
doi: 10.1016/j.anifeedsci.2005.02.029
[19]   CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. DOI: 10.1093/bioinformatics/bty560
doi: 10.1093/bioinformatics/bty560
[20]   MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. DOI: 10.1093/bioinformatics/btr507
doi: 10.1093/bioinformatics/btr507
[21]   BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852-857. DOI: 10.1038/s41587-019-0209-9
doi: 10.1038/s41587-019-0209-9
[22]   CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581-583. DOI: 10.1038/nmeth.3869
doi: 10.1038/nmeth.3869
[23]   WANG Y C, WANG X, LI J Z, et al. The impact of lactating Hu sheep’s dietary protein levels on lactation performance, progeny growth and rumen development[J]. Animal Biotech-nology, 2022.
[24]   MAO S Y, ZHANG R Y, WANG D S, et al. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing[J]. Anaerobe, 2013, 24: 12-19. DOI: 10.1016/j.anaerobe.2013.08.003
doi: 10.1016/j.anaerobe.2013.08.003
[25]   JAMI E, MIZRAHI I. Similarity of the ruminal bacteria across individual lactating cows[J]. Anaerobe, 2012, 18(3): 338-343. DOI: 10.1016/j.anaerobe.2012.04.003
doi: 10.1016/j.anaerobe.2012.04.003
[26]   XUE M Y, SUN H Z, WU X H, et al. Assessment of rumen microbiota from a large dairy cattle cohort reveals the pan and core bacteriomes contributing to varied phenotypes[J]. Applied and Environmental Microbiology, 2018, 84(19): e00970-18. DOI: 10.1128/AEM.00970-18
doi: 10.1128/AEM.00970-18
[27]   CLEMMONS B A, CAMPBELL M A, SCHNEIDER L G, et al. Effect of stocking density and effective fiber on the ruminal bacterial communities in lactating Holstein cows[J]. PeerJ, 2020, 8: e9079. DOI: 10.7717/peerj.9079
doi: 10.7717/peerj.9079
[28]   ZHAO S G, MIN L, ZHENG N, et al. Effect of heat stress on bacterial composition and metabolism in the rumen of lactating dairy cows[J]. Animals, 2019, 9(11): 925. DOI: 10.3390/ani9110925
doi: 10.3390/ani9110925
[29]   HU Y Q, HE Y Y, GAO S, et al. The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn Stover-based diet on the rumen bacterial community and metabolites of beef cattle[J]. Scientific Reports, 2020, 10: 10721. DOI: 10.1038/s41598-020-67716-w
doi: 10.1038/s41598-020-67716-w
[30]   TURNBAUGH P J, HAMADY M, YATSUNENKO T, et al. A core gut microbiome in obese and lean twins[J]. Nature, 2009, 457(7228): 480-484. DOI: 10.1038/nature07540
doi: 10.1038/nature07540
[31]   LOUCA S, PARFREY L W, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272-1277. DOI: 10.1126/science.aaf4507
doi: 10.1126/science.aaf4507
[1] Jinlong QIU,Lei LUO,Bingjie HU,Yanna DANG,Shuang LI,Yan SHI,Shaohua WANG,Kun ZHANG. Functions of developmental pluripotency-associated 2 and 4 (DPPA2/DPPA4) in bovine preimplantation embryo development and their potential mechanisms[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 253-260.
[2] Chenhui LIU,Hailong WU,Lei CHENG,Jie YU,Yu XIA,Min XIANG,Xiuzhong HU,Dingfa WANG,Bifei TAO. Effect of rs109262355 mutation in FYN binding protein gene on lactation performance of Holstein cows in southern China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 261-268.