Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 591-606    DOI: 10.3785/j.issn.1008-9209.2023.05.101
Young Scientist Forum     
Research progresses on target of rapamycin kinase in plants
Wenzhen CHEN1,2(),Jiaqi LIU1,Hao DU1
1.Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
Download: HTML   HTML (   PDF(1889KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In plants, target of rapamycin (TOR) functions as a pivotal signaling and metabolic hub, integrating nutrient availability, energy status, and environmental cues through phosphorylation. This regulatory mechanism plays a crucial role in governing plant growth, development, and environmental adaptation. In this paper, we provide a comprehensive review of the discovery and characterization of TOR in plants. We summarize previous and recent studies on the signaling pathway of plant TOR, highlighting the identification of upstream effect factors and downstream substrates. Additionally, we discuss the diverse roles of TOR in plant embryogenesis, meristem formation, nutrient utilization, flowering, senescence, and responses to both abiotic and biotic stresses. Furthermore, we explore the potential research prospects for TOR kinase and its application in agriculture.



Key wordstarget of rapamycin      protein kinase      signaling pathway      growth and development      environmental adaptation     
Received: 10 May 2023      Published: 03 November 2023
CLC:  S-3  
Corresponding Authors: Hao DU     E-mail: 1870357504@qq.com
Cite this article:

Wenzhen CHEN,Jiaqi LIU,Hao DU. Research progresses on target of rapamycin kinase in plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 591-606.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.05.101     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/591


植物雷帕霉素靶蛋白激酶研究进展

植物雷帕霉素靶蛋白(target of rapamycin, TOR)作为信号和代谢调节中枢,通过磷酸化修饰整合营养、能量和环境信号,感知植物体内能量变化,调节植物生长发育和环境适应过程。在本文中,我们回顾了TOR的发现历程,总结了以往和近期植物TOR的信号通路研究进展(包括新发现的部分上游效应因子和下游调控路径),TOR在植物胚胎发生、分生组织形成、养分利用、开花和衰老等不同生长发育阶段或代谢过程中的重要作用,以及响应非生物胁迫和生物胁迫的生物学机制,还展望了TOR激酶在未来的研究热点方向及其在农业生产中的应用。


关键词: 雷帕霉素靶蛋白,  蛋白激酶,  信号通路,  生长发育,  环境适应 
Fig. 1 Animal and plant TOR kinases and their complex subunit structuresSolid arrows indicate the location for protein interaction, and T-shaped arrow indicates inhibition.
Fig. 2 Central regulatory roles of TOR in plant development
Fig. 3 Schematic diagram of TOR regulatory network in plantsSolid arrows indicate direct activation, and dashed arrows indicate indirect activation, and T-shaped arrows indicate inhibition.
[1]   VÉZINA C, KUDELSKI A, SEHGAL S N. Rapamycin (AY-22,989), a new antifungal antibiotic.Ⅰ. Taxonomy of the producing streptomycete and isolation of the active principle[J]. The Journal of Antibiotics, 1975, 28(10): 721-726. DOI: 10.7164/antibiotics.28.721
doi: 10.7164/antibiotics.28.721
[2]   DUMONT F J, STARUCH M J, KOPRAK S L, et al. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin[J]. Journal of Immunology, 1990, 144(1): 251-258.
[3]   HEITMAN J, MOVVA N R, HALL M N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J]. Science, 1991, 253(5022): 905-909. DOI: 10.1126/science.1715094
doi: 10.1126/science.1715094
[4]   LIU Y L, XIONG Y. Plant target of rapamycin signaling network: complexes, conservations, and specificities[J]. Journal of Integrative Plant Biology, 2022, 64(2): 342-370. DOI: 10.1111/jipb.13212
doi: 10.1111/jipb.13212
[5]   BRUNKARD J O. Exaptive evolution of target of rapamycin signaling in multicellular eukaryotes[J]. Developmental Cell, 2020, 54(2): 142-155. DOI: 10.1016/j.devcel.2020.06.022
doi: 10.1016/j.devcel.2020.06.022
[6]   SHI L, WU Y, SHEEN J. TOR signaling in plants: conservation and innovation[J]. Development, 2018, 145(13): dev160887. DOI: 10.1242/dev.160887
doi: 10.1242/dev.160887
[7]   PEREYRA C M, AZNAR N R, RODRIGUEZ M S, et al. Target of rapamycin signaling is tightly and differently regulated in the plant response under distinct abiotic stresses[J]. Planta, 2019, 251(1): 21. DOI: 10.1007/s00425-019-03305-0
doi: 10.1007/s00425-019-03305-0
[8]   DE VLEESSCHAUWER D, FILIPE O, HOFFMAN G, et al. Target of rapamycin signaling orchestrates growth-defense trade-offs in plants[J]. New Phytologist, 2018, 217(1): 305-319. DOI: 10.1111/nph.14785
doi: 10.1111/nph.14785
[9]   ZHU T T, LI L X, FENG L, et al. Target of rapamycin regulates genome methylation reprogramming to control plant growth in Arabidopsis [J]. Frontiers in Genetics, 2020, 11: 186. DOI: 10.3389/fgene.2020.00186
doi: 10.3389/fgene.2020.00186
[10]   SMAILOV B, ALYBAYEV S, SMEKENOV I, et al. Wheat germination is dependent on plant target of rapamycin signaling[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 606685. DOI: 10.3389/fcell.2020.606685
doi: 10.3389/fcell.2020.606685
[11]   SZWED A, KIM E, JACINTO E. Regulation and metabolic functions of mTORC1 and mTORC2[J]. Physiological Reviews, 2021, 101(3): 1371-1426. DOI: 10.1152/physrev.00026.2020
doi: 10.1152/physrev.00026.2020
[12]   YANG H R, WANG J, LIU M J, et al. 4.4 Å resolution cryo-EM structure of human mTOR complex 1[J]. Protein & Cell, 2016, 7(12): 878-887. DOI: 10.1007/s13238-016-0346-6
doi: 10.1007/s13238-016-0346-6
[13]   REHBEIN U, PRENTZELL M T, SANDOVAL M C, et al. The TSC complex-mTORC1 axis: from lysosomes to stress granules and back[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 751892. DOI: 10.3389/fcell.2021.751892
doi: 10.3389/fcell.2021.751892
[14]   HOXHAJ G, HUGHES-HALLETT J, TIMSON R C, et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels[J]. Cell Reports, 2017, 21(5): 1331-1346. DOI: 10.1016/j.celrep.2017.10.029
doi: 10.1016/j.celrep.2017.10.029
[15]   SHAW R J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth[J]. Acta Physiologica, 2009, 196(1): 65-80. DOI: 10.1111/j.1748-1716.2009.01972.x
doi: 10.1111/j.1748-1716.2009.01972.x
[16]   EFEYAN A, ZONCU R, CHANG S, et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival[J]. Nature, 2013, 493(7434): 679-683. DOI: 10.1038/nature11745
doi: 10.1038/nature11745
[17]   CHUN Y, KIM J. AMPK-mTOR signaling and cellular adaptations in hypoxia[J]. International Journal of Molecular Sciences, 2021, 22(18): 9765. DOI: 10.3390/ijms22189765
doi: 10.3390/ijms22189765
[18]   KIM J, GUAN K L. mTOR as a central hub of nutrient signalling and cell growth[J]. Nature Cell Biology, 2019, 21(1): 63-71. DOI: 10.1038/s41556-018-0205-1
doi: 10.1038/s41556-018-0205-1
[19]   SHEN K, CHOE A, SABATINI D M. Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability[J]. Molecular Cell, 2017, 68(4): 821. DOI: 10.1016/j.molcel.2017.10.031
doi: 10.1016/j.molcel.2017.10.031
[20]   INGARGIOLA C, DUARTE G T, ROBAGLIA C, et al. The plant target of rapamycin: a Conduc TOR of nutrition and metabolism in photosynthetic organisms[J]. Genes, 2020, 11(11): 1285. DOI: 10.3390/genes11111285
doi: 10.3390/genes11111285
[21]   MAHFOUZ M M, KIM S H, DELAUNEY A J, et al. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals[J]. The Plant Cell, 2006, 18(2): 477-490. DOI: 10.1105/tpc.105.035931
doi: 10.1105/tpc.105.035931
[22]   MOREAU M, AZZOPARDI M, CLÉMENT G, et al. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days[J]. The Plant Cell, 2012, 24(2): 463-481. DOI: 10.1105/tpc.111.091306
doi: 10.1105/tpc.111.091306
[23]   MENAND B, DESNOS T, NUSSAUME L, et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene[J]. PNAS, 2002, 99(9): 6422-6427. DOI: 10.1073/pnas.092141899
doi: 10.1073/pnas.092141899
[24]   DEPROST D, TRUONG H N, ROBAGLIA C, et al. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development[J]. Biochemical and Biophysical Research Communications, 2005, 326(4): 844-850. DOI: 10.1016/j.bbrc.2004.11.117
doi: 10.1016/j.bbrc.2004.11.117
[25]   ANDERSON G H, VEIT B, HANSON M R. The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth[J]. BMC Biology, 2005, 3: 12. DOI: 10.1186/1741-7007-3-12
doi: 10.1186/1741-7007-3-12
[26]   OSHIRO N, YOSHINO K, HIDAYAT S, et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function[J]. Genes to Cells, 2004, 9(4): 359-366. DOI: 10.1111/j.1356-9597.2004.00727.x
doi: 10.1111/j.1356-9597.2004.00727.x
[27]   MONTANÉ M H, MENAND B. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change[J]. Journal of Experimental Botany, 2013, 64(14): 4361-4374. DOI: 10.1093/jxb/ert242
doi: 10.1093/jxb/ert242
[28]   XIONG Y, MCCORMACK M, LI L, et al. Glucose-TOR signalling reprograms the transcriptome and activates meristems[J]. Nature, 2013, 496(7444): 181-186. DOI: 10.1038/nature12030
doi: 10.1038/nature12030
[29]   QUILICHINI T D, GAO P, PANDEY P K, et al. A role for TOR signaling at every stage of plant life[J]. Journal of Experimental Botany, 2019, 70(8): 2285-2296. DOI: 10.1093/jxb/erz125
doi: 10.1093/jxb/erz125
[30]   LI L, SHEEN J. Dynamic and diverse sugar signaling[J]. Current Opinion in Plant Biology, 2016, 33: 116-125. DOI: 10.1016/j.pbi.2016.06.018
doi: 10.1016/j.pbi.2016.06.018
[31]   XIONG Y, SHEEN J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants[J]. The Journal of Biological Chemistry, 2012, 287(4): 2836-2842. DOI: 10.1074/jbc.M111.300749
doi: 10.1074/jbc.M111.300749
[32]   FU L W, LIU Y L, QIN G C, et al. The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth[J]. Nature, 2021, 591(7849): 288-292. DOI: 10.1038/s41586-021-03310-y
doi: 10.1038/s41586-021-03310-y
[33]   NUKARINEN E, NÄGELE T, PEDROTTI L, et al. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation[J]. Scientific Reports, 2016, 6: 31697. DOI: 10.1038/srep31697
doi: 10.1038/srep31697
[34]   JAMSHEER K M, JINDAL S, SHARMA M, et al. A negative feedback loop of TOR signaling balances growth and stress-response trade-offs in plants[J]. Cell Reports, 2022, 39(1): 110631. DOI: 10.1016/j.celrep.2022.110631
doi: 10.1016/j.celrep.2022.110631
[35]   SCHEPETILNIKOV M, MAKARIAN J, SROUR O, et al. GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin[J]. The EMBO Journal, 2017, 36(7): 886-903. DOI: 10.15252/embj.201694816
doi: 10.15252/embj.201694816
[36]   LIU Y L, DUAN X L, ZHAO X D, et al. Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabi-dopsis [J]. Developmenal Cell, 2021, 56(9): 1283-1295. DOI: 10.1016/j.devcel.2021.03.022
doi: 10.1016/j.devcel.2021.03.022
[37]   CAO P F, KIM S J, XING A Q, et al. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis [J]. eLife, 2019, 8: e50747. DOI: 10.7554/eLife.50747
doi: 10.7554/eLife.50747
[38]   ZHU S R, FU Q, XU F, et al. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network[J]. New Phytologist, 2021, 232(3): 1168-1183. DOI: 10.1111/nph.17683
doi: 10.1111/nph.17683
[39]   SONG L M, XU G Y, LI T T, et al. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients[J]. Molecular Plant, 2022, 15(7): 1120-1136. DOI: 10.1016/j.molp.2022.05.004
doi: 10.1016/j.molp.2022.05.004
[40]   PACHECO J M, SONG L M, KUBĚNOVÁ L, et al. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana [J]. New Phyto-logist, 2023, 238(1): 169-185. DOI: 10.1111/nph.18723
doi: 10.1111/nph.18723
[41]   YU Y D, ZHONG Z C, MA L Y, et al. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation[J]. New Phytologist, 2022, 236(4): 1326-1338. DOI: 10.1111/nph.18441
doi: 10.1111/nph.18441
[42]   COUSO I, PÉREZ-PÉREZ M E, FORD M M, et al. Phosphorus availability regulates TORC1 signaling via LST8 in chlamydomonas[J]. The Plant Cell, 2020, 32(1): 69-80. DOI: 10.1105/tpc.19.00179
doi: 10.1105/tpc.19.00179
[43]   GOTOR C, LAUREANO-MARÍN A M, MORENO I, et al. Signaling in the plant cytosol: cysteine or sulfide?[J]. Amino Acids, 2015, 47(10): 2155-2164. DOI: 10.1007/s00726-014-1786-z
doi: 10.1007/s00726-014-1786-z
[44]   CHO H, BANF M, SHAHZAD Z, et al. ARSK1 activates TORC1 signaling to adjust growth to phosphate availability in Arabidopsis [J]. Current Biology, 2023, 33(9): 1778-1786. DOI: 10.1016/j.cub.2023.03.005
doi: 10.1016/j.cub.2023.03.005
[45]   LIAO C Y, PU Y T, NOLAN T M, et al. Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis [J]. Autophagy, 2023, 19(4): 1293-1310. DOI: 10.1080/15548627.2022.2124501
doi: 10.1080/15548627.2022.2124501
[46]   WANG P C, ZHAO Y, LI Z P, et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response[J]. Molecular Cell, 2018, 69(1): 100-112. DOI: 10.1016/j.molcel.2017.12.002
doi: 10.1016/j.molcel.2017.12.002
[47]   BELDA-PALAZÓN B, ADAMO M, VALERIO C, et al. A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth[J]. Nature Plants, 2020, 6(11): 1345-1353. DOI: 10.1038/s41477-020-00778-w
doi: 10.1038/s41477-020-00778-w
[48]   SCHEPETILNIKOV M, KOBAYASHI K, GELDREICH A, et al. Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation[J]. The EMBO Journal, 2011, 30(7): 1343-1356. DOI: 10.1038/emboj.2011.39
doi: 10.1038/emboj.2011.39
[49]   REN M Z, QIU S Q, VENGLAT P, et al. Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis [J]. Plant Physiology, 2011, 155(3): 1367-1382. DOI: 10.1104/pp.110.169045
doi: 10.1104/pp.110.169045
[50]   GUERTIN D A, STEVENS D M, THOREEN C C, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1[J]. Developmental Cell, 2006, 11(6): 859-871. DOI: 10.1016/j.devcel.2006.10.007
doi: 10.1016/j.devcel.2006.10.007
[51]   SALEM M A, LI Y, WISZNIEWSKI A, et al. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential[J]. The Plant Journal, 2017, 92(4): 525-545. DOI: 10.1111/tpj.13667
doi: 10.1111/tpj.13667
[52]   AHN C S, AHN H K, PAI H S. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway[J]. Journal of Experimental Botany, 2015, 66(3): 827-840. DOI: 10.1093/jxb/eru438
doi: 10.1093/jxb/eru438
[53]   ZHUO F P, XIONG F J, DENG K X, et al. Target of rapamycin (TOR) negatively regulates ethylene signals in Arabidopsis [J]. International Journal of Molecular Sciences, 2020, 21(8): 2680. DOI: 10.3390/ijms21082680
doi: 10.3390/ijms21082680
[54]   MEYUHAS O. Ribosomal protein S6 phosphorylation: four decades of research[J]. International Review of Cell and Molecular Biology, 2015, 320: 41-73. DOI: 10.1016/bs.ircmb.2015.07.006
doi: 10.1016/bs.ircmb.2015.07.006
[55]   CHEN G H, LIU M J, XIONG Y, et al. TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings[J]. PNAS, 2018, 115(50): 12823-12828. DOI: 10.1073/pnas.1809526115
doi: 10.1073/pnas.1809526115
[56]   LI L X, SONG Y, WANG K, et al. TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis [J]. Frontiers in Plant Science, 2015, 6: 861. DOI: 10.3389/fpls.2015.00861
doi: 10.3389/fpls.2015.00861
[57]   XIONG F J, ZHANG R, MENG Z G, et al. Brassinosteriod insensitive 2 (BIN2) acts as a downstream effector of the target of rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis [J]. New Phytologist, 2017, 213(1): 233-249. DOI: 10.1111/nph.14118
doi: 10.1111/nph.14118
[58]   SUN L X, YU Y H, HU W Q, et al. Ribosomal protein S6 kinase 1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice[J]. Biochimica et Biophysica Acta, 2016, 1861(7): 639-649. DOI: 10.1016/j.bbalip.2016.04.009
doi: 10.1016/j.bbalip.2016.04.009
[59]   BARRADA A, DJENDLI M, DESNOS T, et al. A TOR-YAK1 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis [J]. Development, 2019, 146(3): dev171298. DOI: 10.1242/dev.171298
doi: 10.1242/dev.171298
[60]   ZHANG N, MENG Y Y, LI X, et al. Metabolite-mediated TOR signaling regulates the circadian clock in Arabidopsis [J]. PNAS, 2019, 116(51): 25395-25397. DOI: 10.1073/pnas.1913095116
doi: 10.1073/pnas.1913095116
[61]   STITZ M, KUSTER D, REINERT M, et al. TOR acts as a metabolic gatekeeper for auxin-dependent lateral root initiation in Arabidopsis thaliana [J]. The EMBO Journal, 2023, 42(10): e111273. DOI: 10.15252/embj.2022111273
doi: 10.15252/embj.2022111273
[62]   YUAN X B, XU P, YU Y D, et al. Glucose-TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in Arabidopsis root[J]. PNAS, 2020, 117(51): 32223-32225. DOI: 10.1073/pnas.2015400117
doi: 10.1073/pnas.2015400117
[63]   ZHANG H, GUO L, LI Y P, et al. TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars[J]. Nature Plants, 2022, 8(7): 792-801. DOI: 10.1038/s41477-022-01179-x
doi: 10.1038/s41477-022-01179-x
[64]   DEPROST D, YAO L, SORMANI R, et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation[J]. EMBO Reports, 2007, 8(9): 864-870. DOI: 10.1038/sj.embor.7401043
doi: 10.1038/sj.embor.7401043
[65]   BRUNKARD J O, XU M, SCARPIN M R, et al. TOR dynamically regulates plant cell-cell transport[J]. PNAS, 2020, 117(9): 5049-5058. DOI: 10.1073/pnas.1919196117
doi: 10.1073/pnas.1919196117
[66]   YE R Q, WANG M Y, DU H, et al. Glucose-driven TOR-FIE-PRC2 signalling controls plant development[J]. Nature, 2022, 609(7929): 986-993. DOI: 10.1038/s41586-022-05171-5
doi: 10.1038/s41586-022-05171-5
[67]   XIONG F J, TIAN J W, WEI Z Z, et al. Suppression of the target of rapamycin kinase accelerates tomato fruit ripening through reprogramming the transcription profile and promoting ethylene biosynthesis[J]. Journal of Experimental Botany, 2023, 74(8): 2603-2619. DOI: 10.1093/jxb/erad056
doi: 10.1093/jxb/erad056
[68]   BJEDOV I, RALLIS C. The target of rapamycin signalling pathway in ageing and lifespan regulation[J]. Genes, 2020, 11(9): 1043. DOI: 10.3390/genes11091043
doi: 10.3390/genes11091043
[69]   REN M Z, VENGLAT P, QIU S Q, et al. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis [J]. The Plant Cell, 2012, 24(12): 4850-4874. DOI: 10.1105/tpc.112.107144
doi: 10.1105/tpc.112.107144
[70]   KIM J H, WOO H R, KIM J, et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis [J]. Science, 2009, 323(5917): 1053-1057. DOI: 10.1126/science.1166386
doi: 10.1126/science.1166386
[71]   GAO S, GAO J, ZHU X Y, et al. ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis [J]. Molecular Plant, 2016, 9(9): 1272-1285. DOI: 10.1016/j.molp.2016.06.006
doi: 10.1016/j.molp.2016.06.006
[72]   KIM G D, CHO Y H, YOO S D. Regulatory functions of cellular energy sensor SNF1-related kinase 1 for leaf senescence delay through ETHYLENE-INSENSITIVE 3 repression[J]. Scientific Reports, 2017, 7(1): 3193. DOI: 10.1038/s41598-017-03506-1
doi: 10.1038/s41598-017-03506-1
[73]   ESCOBAR K A, COLE N H, MERMIER C M, et al. Autophagy and aging: maintaining the proteome through exercise and caloric restriction[J]. Aging Cell, 2019, 18(1): e12876. DOI: 10.1111/acel.12876
doi: 10.1111/acel.12876
[74]   SON O, KIM S, KIM D, et al. Involvement of TOR signaling motif in the regulation of plant autophagy[J]. Biochemical and Biophysical Research Communications, 2018, 501(3): 643-647. DOI: 10.1016/j.bbrc.2018.05.027
doi: 10.1016/j.bbrc.2018.05.027
[75]   PU Y T, LUO X J, BASSHAM D C. TOR-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana [J]. Frontiers in Plant Science, 2017, 8: 1204. DOI: 10.3389/fpls.2017.01204
doi: 10.3389/fpls.2017.01204
[76]   WEN B B, XIAO W, MU Q, et al. How does nitrate regulate plant senescence?[J]. Plant Physiology and Biochemistry, 2020, 157: 60-69. DOI: 10.1016/j.plaphy.2020.08.041
doi: 10.1016/j.plaphy.2020.08.041
[77]   LI D Y, DING Y D, CHENG L, et al. Target of rapamycin (TOR) regulates the response to low nitrogen stress via autophagy and hormone pathways in Malus hupehensis [J]. Horticulture Research, 2022, 9: uhac143. DOI: 10.1093/hr/uhac143
doi: 10.1093/hr/uhac143
[78]   SONG Y, ZHAO G, ZHANG X Y, et al. The crosstalk between target of rapamycin (TOR) and jasmonic acid (JA) signaling existing in Arabidopsis and cotton[J]. Scientific Reports, 2017, 7: 45830. DOI: 10.1038/srep45830
doi: 10.1038/srep45830
[79]   DONG Y H, AREF R, FORIERI I, et al. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity[J]. The Plant Cell, 2022, 34(10): 3814-3829. DOI: 10.1093/plcell/koac201
doi: 10.1093/plcell/koac201
[80]   MARGALHA L, CONFRARIA A, BAENA-GONZÁLEZ E. SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses[J]. Journal of Experimental Botany, 2019, 70(8): 2261-2274. DOI: 10.1093/jxb/erz066
doi: 10.1093/jxb/erz066
[81]   DAI L F, WANG B J, WANG T, et al. The TOR complex controls ATP levels to regulate actin cytoskeleton dynamics in Arabidopsis [J]. PNAS, 2022, 119(38): e2122969119. DOI: 10.1073/pnas.2122969119
doi: 10.1073/pnas.2122969119
[82]   KRAVCHENKO A, CITERNE S, JÉHANNO I, et al. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis[J]. Biochemical and Biophysical Research Communications, 2015, 467(4): 992-997. DOI: 10.1016/j.bbrc.2015.10.028
doi: 10.1016/j.bbrc.2015.10.028
[83]   BAKSHI A, MOIN M, MADHAV M S, et al. Target of Rapamycin (TOR) negatively regulates chlorophyll degradation and lipid peroxidation and controls responses under abiotic stress in Arabidopsis thaliana [J]. Plant Stress, 2021, 2: 100020. DOI: 10.1016/j.stress.2021.100020
doi: 10.1016/j.stress.2021.100020
[84]   KUNKOWSKA A B, FONTANA F, BETTI F, et al. Target of rapamycin signaling couples energy to oxygen sensing to modulate hypoxic gene expression in Arabidopsis [J]. PNAS, 2023, 120(3): e2082493176. DOI: 10.1073/pnas.2212474120
doi: 10.1073/pnas.2212474120
[85]   CHO H Y, LU M Y J, SHIH M C. The SnRK1-eIFiso4G1 signaling relay regulates the translation of specific mRNAs in Arabidopsis under submergence[J]. New Phytologist, 2019, 222(1): 366-381. DOI: 10.1111/nph.15589
doi: 10.1111/nph.15589
[86]   SCARPIN M R, LEIBOFF S, BRUNKARD J O. Parallel global profiling of plant TOR dynamics reveals a conserved role for LARP1 in translation[J]. eLife, 2020, 9: e58795. DOI: 10.7554/eLife.58795
doi: 10.7554/eLife.58795
[87]   MERRET R, DESCOMBIN J, JUAN Y T, et al. XRN4 and LARP1 are required for a heat-triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress[J]. Cell Reports, 2013, 5(5): 1279-1293. DOI: 10.1016/j.celrep.2013.11.019
doi: 10.1016/j.celrep.2013.11.019
[88]   SHARMA M, BANDAY Z Z, SHUKLA B N, et al. Glucose-regulated HLP1 acts as a key molecule in governing thermo-memory[J]. Plant Physiology, 2019, 180(2): 1081-1100. DOI: 10.1104/pp.18.01371
doi: 10.1104/pp.18.01371
[89]   SHARMA M, SHARMA M, JAMSHEER K M, et al. A glucose-target of rapamycin signaling axis integrates environ-mental history of heat stress through maintenance of transcription-associated epigenetic memory in Arabidopsis [J]. Journal of Experimental Botany, 2022, 73(20): 7083-7102. DOI: 10.1093/jxb/erac338
doi: 10.1093/jxb/erac338
[90]   SONG Y, LI L X, YANG Z E, et al. Target of rapamycin (TOR) regulates the expression of lncRNAs in response to abiotic stresses in cotton[J]. Frontiers in Genetics, 2018, 9: 690. DOI: 10.3389/fgene.2018.00690
doi: 10.3389/fgene.2018.00690
[91]   HUOT B, YAO J, MONTGOMERY B L, et al. Growth-defense tradeoffs in plants: a balancing act to optimize fitness[J]. Molecular Plant, 2014, 7(8): 1267-1287. DOI: 10.1093/mp/ssu049
doi: 10.1093/mp/ssu049
[92]   AHN C S, LEE D H, PAI H S. Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway[J]. Planta, 2019, 249(2): 527-542. DOI: 10.1007/s00425-018-3024-5
doi: 10.1007/s00425-018-3024-5
[93]   SOPRANO A S, ABE V Y, SMETANA J H C, et al. Citrus MAF1, a repressor of RNA polymerase Ⅲ, binds the Xantho-monas citri canker elicitor PthA4 and suppresses citrus canker development[J]. Plant Physiology, 2013, 163(1): 232-242. DOI: 10.1104/pp.113.224642
doi: 10.1104/pp.113.224642
[94]   BLAYNEY J, GEARY J, CHRISP R, et al. Impact on Arabidopsis growth and stress resistance of depleting the Maf1 repressor of RNA polymerase Ⅲ[J]. Gene, 2022, 815: 146130. DOI: 10.1016/j.gene.2021.146130
doi: 10.1016/j.gene.2021.146130
[95]   METEIGNIER L V, OIRDI M EL, COHEN M, et al. Trans-latome analysis of an NB-LRR immune response identifies important contributors to plant immunity in Arabidopsis [J]. Journal of Experimental Botany, 2017, 68(9): 2333-2344. DOI: 10.1093/jxb/erx078
doi: 10.1093/jxb/erx078
[96]   OUIBRAHIM L, RUBIO A G, MORETTI A, et al. Poty-viruses differ in their requirement for TOR signalling[J]. The Journal of General Virology, 2015, 96(9): 2898-2903. DOI: 10.1099/vir.0.000186
doi: 10.1099/vir.0.000186
[97]   AZNAR N R, CONSOLO V F, SALERNO G L, et al. TOR signaling downregulation increases resistance to the cereal killer Fusarium graminearum [J]. Plant Signaling & Behavior, 2018, 13(2): e1414120. DOI: 10.1080/15592324.2017.1414120
doi: 10.1080/15592324.2017.1414120
[98]   AHMED M R, DU Z Y. Molecular interaction of nonsense-mediated mRNA decay with viruses[J]. Viruses, 2023, 15(4): 816. DOI: 10.3390/v15040816
doi: 10.3390/v15040816
[99]   TANG J, WU D S, LI X X, et al. Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation[J]. The EMBO Journal, 2022, 41(6): e109102. DOI: 10.15252/embj.2021109102
doi: 10.15252/embj.2021109102
[100]   GAO X Q, CHEN X, LIN W W, et al. Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases[J]. PLoS Pathogens, 2013, 9(1): e1003127. DOI: 10.1371/journal.ppat.1003127
doi: 10.1371/journal.ppat.1003127
[101]   ALVES H L S, MATIOLLI C C, SOARES R C, et al. Carbon/nitrogen metabolism and stress response networks: calcium-dependent protein kinases as the missing link?[J]. Journal of Experimental Botany, 2021, 72(12): 4190-4201. DOI: 10.1093/jxb/erab136
doi: 10.1093/jxb/erab136
[102]   FLAVELL R B. A framework for improving wheat spike development and yield based on the master regulatory TOR and SnRK gene systems[J]. Journal of Experimental Botany, 2023, 74(3): 755-768. DOI: 10.1093/jxb/erac469
doi: 10.1093/jxb/erac469
[103]   BAKSHI A, MOIN M, KUMAR M U, et al. Ectopic expression of Arabidopsis target of rapamycin (AtTOR) improves water-use efficiency and yield potential in rice[J]. Scientific Reports, 2017, 7: 42835. DOI: 10.1038/srep42835
doi: 10.1038/srep42835
[104]   DUAN Q H, KITA D, LI C, et al. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair develop-ment[J]. PNAS, 2010, 107(41): 17821-17826. DOI: 10.1073/pnas.1005366107
doi: 10.1073/pnas.1005366107
[105]   WANG P, CLARK N M, NOLAN T M, et al. FERONIA functions through target of rapamycin (TOR) to negatively regulate autophagy[J]. Frontiers in Plant Science, 2022, 13: 961096. DOI: 10.3389/fpls.2022.961096
doi: 10.3389/fpls.2022.961096
[106]   CHEN J, YU F, LIU Y, et al. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis [J]. PNAS, 2016, 113(37): E5519-E5527. DOI: 10.1073/pnas.1608449113
doi: 10.1073/pnas.1608449113
[1] Lianbin XU,Yifei REN,Wei LAN,Pengfei HOU,Hongyun LIU. Mechanism of rapamycin alleviating inflammatory response in bovine mammary epithelial cells[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 240-246.
[2] Yang WU,Xiaohua YAO,Zhengsheng HE,Chun’e WANG,Huiwen ZHOU,Sicheng YE,Yingpei SONG,Fan WANG,Xian ZHANG,Yinxiang GAO. Research progress of light effects on photosynthesis, growth and development of oil-tea (Camellia oleifera)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 147-157.
[3] Yunrui CHEN,Zhijun MAO,Zhaowei LI,Kai FAN. Research status and progress in structure and function of protein phosphatase 2C in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 11-20.
[4] Lianfu CHEN,Ning REN,Yi Charlie CHEN,Youying TU. Effect of saponins extracted from tea (Camellia sinensis) flower on the proliferation of ovarian cancer stem like cells and its mechanism[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 667-676.
[5] WANG Han, ZHAO Panpan, ZHANG Kun.

Cell lineage specification and its regulation mechanisms during mammalian preimplantation development [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 125-130.

[6] Guan Xiaoyan, Chen Lifei, He Yanjun, Wang Jie, Lu Gang*. Subcellular localization and tissue expression pattern of SlMAPK7 gene in tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(6): 598-604.
[7] Lü Linhui1, Xu Youping2, Ren Zhixuan1, Kang Dong1, Wang Jipeng1, Cai Xinzhong1*. Effect of Ca2+ signaling pathway on leaf position-associated resistance to Sclerotinia sclerotiorum in Nicotiana benthamiana.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(6): 605-610.
[8] Li Yang1, Zhao Yuan1, Xu Youping2, Wang Jipeng1, Cai Xinzhong1*. Effect of oxalic acid on Ca2+ concentration and signaling pathways in plants.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 141-145.
[9] Bian Yingying1,2, Song Naiping2*. Farmers’ environmental perception and adaptation of different livelihood strategies in ecotone: a case of Wanjigou village, Yanchi County, Ningxia.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 210-222.
[10] . Isolation of mitogenactivated protein kinase SlMAPK12 gene and characterization of its expression pattern in Solanum lycopersicum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 551-558.