Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (4): 557-565    DOI: 10.3785/j.issn.1008-9209.2023.03.101
Research articles     
Structural and functional properties of the glycosylated products of perilla seed meal proteins
Dan WANG1,2(),He LI1,2,Zhijun ZHANG1,2,Huizhen LI1,2()
1.School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China
2.Jinzhong Institute of Industrial Technology and Innovation, North University of China, Jinzhong 030600, Shanxi, China
Download: HTML   HTML (   PDF(2852KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Fructose (FRU), dextran (DEX), and maltodextrin (MD) with different molecular weights were used as inducers to modify perilla seed meal protein (PSMP) using a wet heating method, in order to explore their effects on the structural and functional properties of PSMP glycosylated products. The detection results of grafting degree and browning degree showed that all three kinds of sugars underwent glycosylation reactions with PSMP. Compared with PSMP, the solubility of the three PSMP glycosylated products was improved under medium and alkaline conditions, with the solubility of P-DEX showing an increase of about 9% at pH 7.0. Meanwhile, the emulsifying, foaming, thermal properties, and oil-holding capacity of the three PSMP glycosylated products were significantly improved, with P-DEX showing the best performance. The detection results of Fourier transform infrared spectrum (FTIR) and endogenous fluorescence spectra confirmed that both the secondary and tertiary structures of PSMP glycosylated products were altered. The internal conformational unfolding of the modified products was observed by scanning electron microscopy (SEM), indicating that the structural changes were the main reason for the functional properties of the proteins. In summary, the glycosylation of PSMP significantly improved both its structural and functional properties. This study offers new ideas and methods for the applications of PSMP, as well as some theoretical and practical support for research into the structural relationships of glycosylated proteins.



Key wordsperilla seed meal protein      glycosylation      structure      emulsifying property      functional properties     
Received: 10 March 2023      Published: 29 August 2023
CLC:  TS201.2  
Corresponding Authors: Huizhen LI     E-mail: 2848252473@qq.com;hzli@nuc.edu.cn
Cite this article:

Dan WANG,He LI,Zhijun ZHANG,Huizhen LI. Structural and functional properties of the glycosylated products of perilla seed meal proteins. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 557-565.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.03.101     OR     https://www.zjujournals.com/agr/Y2023/V49/I4/557


紫苏籽粕蛋白糖基化产物结构及功能特性

以果糖(fructose, FRU)、葡聚糖(dextran, DEX)和麦芽糊精(maltodextrin, MD)3种不同分子量的糖为诱导物,采用湿热法对紫苏籽粕蛋白(perilla seed meal protein, PSMP)进行改性,探究3种糖对PSMP糖基化产物结构和功能特性的影响。接枝度和褐变程度测定结果表明,3种糖均与PSMP发生了糖基化反应。与PSMP相比,3种PSMP糖基化产物的溶解性在中性、碱性条件下均得到改善,其中P-DEX的溶解度在pH 7.0时提高约9%。同时,3种PSMP糖基化产物的乳化性、起泡性、热性能以及持油力均明显得到提高,其中P-DEX表现最优。傅里叶变换红外光谱(Fourier transform infrared spectrum, FTIR)和内源荧光光谱测定结果证实,PSMP糖基化产物的二、三级结构均发生了改变;扫描电镜观察到改性产物内部构象展开,表明结构的改变是影响蛋白质功能特性的主要原因。综上所述,PSMP糖基化改性对其结构和功能特性都有明显改善。本研究结果可为PSMP的应用提供新的思路和方法,也为糖基化蛋白构效关系研究提供了一定的理论和技术支撑。


关键词: 紫苏籽粕蛋白,  糖基化,  结构,  乳化性,  功能特性 

样品

Sample

接枝度

Grafting degree/%

褐变程度

Browning degree

PSMP0.245±0.011d
P-FRU8.95±0.42c0.326±0.013c
P-DEX10.58±1.78b0.448±0.014a
P-MD13.01±0.70a0.427±0.013b
Table 1 Grafting degrees and browning degrees of sugars with different molecular weights underwent glycosylation reactions with PSMP
Fig. 1 FTIR spectrograms of PSMP and its glycosylated products
Fig. 2 Endogenous fluorescence spectra of the glycosylated products after the reaction between sugars with different molecular weights and PSMPThe number in parentheses represents the offset distance of the maximum wavelength (λ) of each glycosylated product compared with PSMP in the figure.
Fig. 3 Microstructures of PSMP and its glycosylated products (500×)
Fig. 4 Thermal properties of PSMP and its glycosylated productsThe arrow points to the direction of temperature rise.

样品

Sample

起始温度

Tonset/℃

峰值熔化温度

Tp/℃

焓变

ΔH/(mJ/mg)

PSMP47.1178.69±0.47c-124.91
P-FRU46.4383.46±0.49a-133.72
P-DEX50.8579.98±0.72b-221.89
P-MD47.7980.62±0.14b-245.34
Table 2 DSC detecting results of PSMP and its glycosylated products

样品

Sample

持油力

Oil-holding capacity/(g/g)

PSMP6.15±0.80d
P-FRU10.03±0.70c
P-DEX10.32±0.42b
P-MD12.44±1.05a
Table 3 Oil-holding capacity of PSMP and its glycosylated products
Fig. 5 Solubility of PSMP and its glycosylated products
Fig. 6 Foaming performance of PSMP and its glycosylated products
Fig. 7 Emulsifying properties of PSMP and its glycosylated products
[1]   TAKENAKA Y, ARII Y, MASUI H. Subunit structure and functional properties of the predominant globulin of perilla (Perilla frutescens var. frutescens) seeds[J]. Bioscience, Biotech-nology, and Biochemistry, 2010, 74(12): 2475-2479. DOI: 10.1271/bbb.100557
doi: 10.1271/bbb.100557
[2]   ZHAO Q L, WANG L F, HONG X, et al. Structural and functional properties of perilla protein isolate extracted from oilseed residues and its utilization in pickering emulsions[J]. Food Hydrocolloids, 2021, 113: 106412. DOI: 10.1016/j.foodhyd.2020.106412
doi: 10.1016/j.foodhyd.2020.106412
[3]   龙应霞.紫苏籽有效成分提取工艺及在动物生产中的应用[J].饲料研究,2020,43(9):136-139. DOI:10.13557/j.cnki.issn1002-2813.2020.09.036
LONG Y X. Extraction process of active ingredients from Perilla seeds and application in animal production[J]. Feed Research, 2020, 43(9): 136-139. (in Chinese with English abstract)
doi: 10.13557/j.cnki.issn1002-2813.2020.09.036
[4]   贾槐旺.紫苏籽抗氧化肽的分离纯化及其降血脂功能性研究[D].山西,太原:山西大学,2021.
JIA H W. Study on the separation and purification of perilla seed antioxidant peptide and its hypolipidemic function[D]. Taiyuan, Shanxi: Shanxi University, 2021. (in Chinese with English abstract)
[5]   LI Y L, XU Y J, XU X L. Continuous cyclic wet heating glycation to prepare myofibrillar protein-glucose conjugates: a study on the structures, solubility and emulsifying properties[J]. Food Chemistry, 2022, 388: 133035. DOI: 10.1016/j.foodchem.2022.133035
doi: 10.1016/j.foodchem.2022.133035
[6]   ZHANG J X, WEN C T, DUAN Y Q, et al. Structure and functional properties of watermelon seed protein-glucose conjugates prepared by different methods[J]. LWT-Food Science and Technology, 2022, 155: 113004. DOI: 10.1016/j.lwt.2021.113004
doi: 10.1016/j.lwt.2021.113004
[7]   刘佩.糖基化乳清分离蛋白/原花青素复合物的制备及抗油脂氧化乳液体系的构建[D].湖北,武汉:武汉轻工大学,2021.
LIU P. Preparation of glycosylated whey protein isolate/proanthocyanidins compounds and fabrication on anti-lipid oxidation emulsion[D]. Wuhan, Hubei: Wuhan Polytechnic University, 2021. (in Chinese with English abstract)
[8]   QU W J, ZHANG X X, CHEN W Y, et al. Effects of ultrasonic and graft treatments on grafting degree, structure, functionality, and digestibility of rapeseed protein isolate-dextran conjugates[J]. Ultrasonics Sonochemistry, 2018, 42: 250-259. DOI: 10.1016/j.ultsonch.2017.11.021
doi: 10.1016/j.ultsonch.2017.11.021
[9]   HAN M M, YI Y, WANG H X, et al. Investigation of the Maillard reaction between polysaccharides and proteins from longan pulp and the improvement in activities[J]. Molecules, 2017, 22(6): 938. DOI: 10.3390/molecules22060938
doi: 10.3390/molecules22060938
[10]   LI R, CUI Q, WANG G R, et al. Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates[J]. Food Hydrocolloids, 2019, 95: 349-357. DOI: 10.1016/j.foodhyd.2019.04.030
doi: 10.1016/j.foodhyd.2019.04.030
[11]   FENG J, WU S S, WANG H, et al. Improved bioavailability of curcumin in ovalbumin-dextran nanogels prepared by Maillard reaction[J]. Journal of Functional Foods, 2016, 27: 55-68. DOI: 10.1016/j.jff.2016.09.002
doi: 10.1016/j.jff.2016.09.002
[12]   BETTI M, CIACCI C, ABRAMOVICH S, et al. Protein extractions from Amphistegina lessonii: protocol development and optimization[J]. Life, 2021, 11(5): 418. DOI: 10.3390/life11050418
doi: 10.3390/life11050418
[13]   李瑞平.微波场内草鱼鱼肉蛋白营养和结构性质的研究[D].江西,南昌:南昌大学,2015.
LI R P. The research of grass carp meat protein on the nutrition and structure properties in a microwave field[D]. Nanchang, Jiangxi: Nanchang University, 2015. (in Chinese with English abstract)
[14]   GAJEWSKA D, KĘSZYCKA P K, SZKOP M. Dietary salicylates in herbs and spices[J]. Food & Function, 2019, 10(11): 7037-7041. DOI: 10.1039/c9fo01660k
doi: 10.1039/c9fo01660k
[15]   李存.结晶麦芽美拉德反应产物的初步研究[D].江苏,无锡:江南大学,2022.
LI C. Preliminary study on Maillard reaction products of crystal malt[D]. Wuxi, Jiangsu: Jiangnan University, 2022. (in Chinese with English abstract)
[16]   LERTITTIKUL W, BENJAKUL S, TANAKA M. Charac-teristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH[J]. Food Chemistry, 2007, 100(2): 669-677. DOI: 10.1016/j.foodchem.2005.09.085
doi: 10.1016/j.foodchem.2005.09.085
[17]   张蓓,郭晓娜,朱科学,等.燕麦蛋白糖基化改性研究[J].中国粮油学报,2016,31(6):41-46. DOI:10.3969/j.issn.1003-0174.2016.06.008
ZHANG B, GUO X N, ZHU K X, et al. Glycation reaction of oat protein isolate[J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(6): 41-46. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-0174.2016.06.008
[18]   LIU Y, ZHAO G L, ZHAO M M, et al. Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction[J]. Food Chemistry, 2012, 131(3): 901-906. DOI: 10.1016/j.foodchem.2011.09.074
doi: 10.1016/j.foodchem.2011.09.074
[19]   RAHIMI YAZDI S, CORREDIG M. Heating of milk alters the binding of curcumin to casein micelles. A fluorescence spectroscopy study[J]. Food Chemistry, 2012, 132(3): 1143-1149. DOI: 10.1016/j.foodchem.2011.11.019
doi: 10.1016/j.foodchem.2011.11.019
[20]   李天娇.藜麦蛋白糖基化产物特性研究及其在高直链玉米淀粉膜中的应用[D].吉林,长春:吉林农业大学,2020.
LI T J. Study on the characteristics of quinoa protein glycosylation product and its application in high amylose corn starch[D]. Changchun, Jilin: Jilin Agricultural University, 2020. (in Chinese with English abstract)
[21]   CHEN W J, LÜ R L, WANG W J, et al. Time effect on structural and functional properties of whey protein isolate-gum acacia conjugates prepared via Maillard reaction[J]. Journal of the Science of Food and Agriculture, 2019, 99(10): 4801-4807. DOI: 10.1002/jsfa.9735
doi: 10.1002/jsfa.9735
[22]   李会珍,张雲龙,张红娇,等.紫苏籽营养及产品加工研究进展[J].中国油脂,2021,46(9):120-124. DOI:10.19902/j.cnki.zgyz.1003-7969.210113
LI H Z, ZHANG Y L, ZHANG H J, et al. Progress on nutrition and product processing of perilla seed[J]. China Oils and Fats, 2021, 46(9): 120-124. (in Chinese with English abstract)
doi: 10.19902/j.cnki.zgyz.1003-7969.210113
[23]   KOTCHABHAKDI A, VARDHANABHUTI B. Formation of heated whey protein isolate-pectin complexes at pH greater than the isoelectric point with improved emulsification properties[J]. Journal of Dairy Science, 2020, 103(8): 6820-6829. DOI: 10.3168/jds.2019-17745
doi: 10.3168/jds.2019-17745
[24]   TOWNSEND A A, NAKAI S. Relationships between hydro-phobicity and foaming characteristics of food proteins[J]. Journal of Food Science, 1983, 48(2): 588-594.
[25]   MOLINA E, PAPADOPOULOU A, LEDWARD D A. Emul-sifying properties of high pressure treated soy protein isolate and 7S and 11S globulins[J]. Food Hydrocolloids, 2001, 15(3): 263-269. DOI: 10.1016/S0268-005X(01)00023-6
doi: 10.1016/S0268-005X(01)00023-6
[26]   ZHONG L, MA N, WU Y L, et al. Characterization and functional evaluation of oat protein isolate-Pleurotus ostreatus β-glucan conjugates formed via Maillard reaction[J]. Food Hydrocolloids, 2019, 87: 459-469. DOI: 10.1016/j.foodhyd.2018.08.034
doi: 10.1016/j.foodhyd.2018.08.034
[1] Xin HAO,Ruina TAN,Jie CHEN,Yang LI,Jingxin CAO,Jian DIAO,Zhen DENG,Ping ZHANG,Ling MA. Analysis of structures and expression patterns of the flavin-containing monooxygenase family genes in Bursaphelenchus xylophilus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 191-199.
[2] Wenfeng GONG,Zeying WANG,Jinliang LIU,Yu SUN,Xinxin YANG,Shuai WEI,Liping WEI. Characteristics of the rhizosphere bacterial community of endangered plant Cupressus gigantea in Tibet[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 241-252.
[3] Yudong QUAN,Kongming WU. Research progress of vegetative insecticidal protein Vip3 insect-resistant transgenic crops[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 672-682.
[4] Runguo SHU,Hang ZHOU,Zixiong CAO,Kang HE,Fei LI. Reconstruction of internal structures of Nilaparvata lugens using micro-computer tomography technology (Micro CT)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 797-806.
[5] Minghao SUN, Yuqi HUANG, Yanna DANG, Jin HE. Molecular characterization of pig LEG1a protein[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 261-268.
[6] Shengyan SU,Linbing ZHANG,Haiyang LI,Can GAO,Xinjin HE,Can TIAN,Jianlin LI,Meiyao WANG,Yongkai TANG. Genetic diversity and structure analyses of largemouth bass (Micropterus salmoides) original and cultured populations based on microsatellite markers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 687-698.
[7] Caiyun PENG,Ge WANG,Bo ZHAO,Xingyan LIAO,Jian ZHANG,Jiujin XIAO,Chenjun MU. Community structure characteristics of medium- and small-sized soil faunas in typical artificial plantations in the upper reaches of Yangtze River[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 585-595.
[8] Zhennan YE,Fei’er WANG,Lingye JI,Jie YU. Agricultural production structure adjustment based on a multi-objective control in the Tiaoxi watershed[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 66-74.
[9] XU Yimeng, ZHU Xiaowen, LIU Zhijie, HU Yaohua, GU Fang. Field simulation and structure optimization of the air conveying system in air assisted sprayer based on computer fluid dynamics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 451-458.
[10] SHEN Weizheng, QU Tengyu, WEI Xiaoli, MU Yingxin. Design and analysis of parameter optimization on development of corn straw fiber composition by ultrasound with alkalization pretreatment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 116-124.
[11] WANG Yongwei, HE Zhuoliang, CHEN Jun, WANG Jun, ZHANG Lingyue, TANG Yanhai. Optimization on structure and parameters of a collision-pneumatic hybrid rice pollination machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 98-106.
[12] LI Xuqing, ZHANG Ya, TIAN Zhongling, WU Genliang. Difference analysis of soil nutrients, enzymatic activities and microbial community structure between eggplant continuous cropping and rotation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 561-569.
[13] QIU Shuai, WU Guanghong, CHEN Xuping, GUO Juan, WEI Jianfen, SHEN Baichun, HU Shaoqing. Evolution analysis of sweet osmanthus (Osmanthus fragrans) cultivars based on sequence-related amplified polymorphism molecular marker[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 404-415.
[14] Wang Qingsong, Liu Yong, Wang Xin, Sun Hong, Yao Xiaohong, Wu Yifei, Tang Jiangwu, Ge Xiangyang. Preparation and performance study of water purification bacteria-embedded solid capsules based on texture profile analysis.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 712-722.
[15] Fang Shu, Dai Chong, Yan Juan. Phylogenetic analysis of strain CHBT-1721 with other thermophile bacteria isolated from hot springs of China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 15-24.