Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (1): 75-85    DOI: 10.3785/j.issn.1008-9209.2023.03.011
Food Sciences     
Effects of volatile organic compounds on postharvest brown rot control and sensory quality of peach fruit
Zhihao LI1(),Siyin LIN1,Ying GAO1,Can YANG1,Dan JIANG1,Bo ZHANG1,2()
1.Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, Shandong, China
Download: HTML   HTML (   PDF(5600KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Peach fruit is susceptible to Monilinia fructicola during storage and logistics, leading to occurrence of brown rot and fruit quality deterioration. However, the regulatory effects of volatile organic compounds (VOCs) on brown rot remain unclear. This study analyzed the antifungal effects of major VOCs in ripe peach fruit on M. fructicola. The results showed that 12 VOCs involving carvacrol and (E)-2-hexenal were identified to have significant inhibitory effects on the growth of M. fructicola on media. Further research was conducted on the regulatory effects of 12 VOCs on postharvest brown rot of peach fruit. The results showed that the fumigation treatment with VOCs could effectively inhibit the growth of M. fructicola and delay the occurrence of brown rot. Among them, volatile aldehydes exhibited positive effects on maintaining fruit quality. Fumigation with 25 μL/L (E)-2-hexenal significantly inhibited the growth of M. fructicola and reduced brown rot symptoms in peach fruit. Meanwhile, the fruit appearance, ethylene release rate, hardness, total soluble solid content and sensory quality indicators were not affected, therefore maintaining the merchant ability of peach fruit during the postharvest storage. In summary, (E)-2-hexenal has the potential to be developed as a plant-based fungicide, offering quality assurance for the peach fruit supply chain.



Key wordsvolatile organic compounds      antifungal activity      peach fruit      brown rot      Monilinia fructicola     
Received: 01 March 2023      Published: 01 March 2024
CLC:  TS255.3  
Corresponding Authors: Bo ZHANG     E-mail: zh-li@zju.edu.cn;bozhang@zju.edu.cn
Cite this article:

Zhihao LI,Siyin LIN,Ying GAO,Can YANG,Dan JIANG,Bo ZHANG. Effects of volatile organic compounds on postharvest brown rot control and sensory quality of peach fruit. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 75-85.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.03.011     OR     https://www.zjujournals.com/agr/Y2024/V50/I1/75


挥发性有机化合物对桃果实采后褐腐病控制及感官品质的影响

桃果实在采后贮藏物流过程中易受到果生链核盘菌(Monilinia fructicola)的侵染,导致褐腐病发生和果实品质劣变,有关的挥发性有机化合物(volatile organic compounds, VOCs)对褐腐病的调控效果尚不清楚。本研究分析了成熟桃果实中主要VOCs对果生链核盘菌的抑菌效果,结果表明,香芹酚、反-2-己烯醛等12种VOCs可以显著抑制病原菌在培养基上的生长。进一步开展上述12种VOCs对桃果实采后褐腐病的调控效应研究,结果表明,采用VOCs熏蒸处理可以有效抑制果生链核盘菌的生长,延缓褐腐病发生,其中挥发性醛类物质对果实品质的保持效果较好。采用25 μL/L反-2-己烯醛熏蒸处理可以显著抑制果生链核盘菌生长,减轻褐腐病症状,同时不影响果实外观、乙烯释放速率、硬度、总可溶性固形物含量和感官品质指标,有效维持桃果实在采后贮藏过程中的商品性。综上所述,反-2-己烯醛具有开发为植物源抑菌剂的潜力,可为桃果实供应链提供品质保障。


关键词: 挥发性有机化合物,  抑菌活性,  桃果实,  褐腐病,  果生链核盘菌 
Fig. 1 Antifungal effects of 1 000 μL/L VOCs on M. fructicola in vitroCK: 0.9% saline solution (the same as below); 1: Linalool; 2: Limonene; 3: Carvacrol; 4: Hexanol; 5: (E)-2-hexenol; 6: (E)-3-hexenol; 7: (Z)-3-hexenol; 8: Octanol; 9: Hexanal; 10: (E)-2-hexenal; 11: Nonanal; 12: (E)-2-nonenal; 13: Hexyl acetate; 14: γ-caprolactone; 15: γ-decalactone.
VOCs

菌落直径

Colony diameter/

mm

抑制率

Inhibition

rate/%

香芹酚 Carvacrol5.00±0.00100.00±0.00
辛醇 Octanol5.00±0.00100.00±0.00
反-2-壬烯醛 (E)-2-nonenal5.00±0.00100.00±0.00
壬醛 Nonanal5.00±0.00100.00±0.00
反-2-己烯醛 (E)-2-hexenal5.00±0.00100.00±0.00
芳樟醇 Linalool5.00±0.00100.00±0.00
己醛 Hexanal5.00±0.00100.00±0.00
乙酸己酯 Hexyl acetate5.00±0.00100.00±0.00
己醇 Hexanol5.00±0.00100.00±0.00
反-2-己烯醇 (E)-2-hexenol5.00±0.00100.00±0.00
反-3-己烯醇 (E)-3-hexenol5.00±0.00100.00±0.00
顺-3-己烯醇 (Z)-3-hexenol5.00±0.00100.00±0.00
柠檬烯 Limonene7.24±1.5794.60±3.80
γ-己内酯 γ-caprolactone24.03±5.7654.04±13.92
γ-癸内酯 γ-decalactone28.94±9.6142.20±23.20
Table 1 Inhibition effects of 1 000 μL/L VOCs on the mycelia of M. fructicola
VOCsEC50/(μL/L)R2
香芹酚 Carvacrol3.500.98
辛醇 Octanol16.010.99
反-2-壬烯醛 (E)-2-nonenal17.300.99
壬醛 Nonanal17.430.97
反-2-己烯醛 (E)-2-hexenal20.860.98
芳樟醇 Linalool31.230.97
己醛 Hexanal54.340.94
乙酸己酯 Hexyl acetate77.440.91
己醇 Hexanol98.220.97
反-2-己烯醇 (E)-2-hexenol154.701.00
反-3-己烯醇 (E)-3-hexenol164.500.98
顺-3-己烯醇 (Z)-3-hexenol227.200.98
Table 2 EC50 values of VOCs for inhibiting the growth of M. fructicola
Fig. 2 Effects of fumigation treatments with VOCs on brown rot of peach fruit during the postharvest storage
Fig. 3 Effects of fumigation treatments with VOCs on the plaque diameter of M. fructicola in peach fruit during the postharvest storageIn the figures, different lowercase letters among different concentrations at the same time indicate significant differences at the 0.05 probability level.
Fig. 4 Effects of 25 μL/L VOCs on brown rot of peach fruit during the postharvest storageA. Peach fruit inoculated with M. fructicola; B. Plaque diameter. In the figures, different lowercase letters among different treatments at the same time indicate significant differences at the 0.05 probability level.
Fig. 5 Effects of 25 μL/L VOCs on external quality of peach fruit during the postharvest storage
Fig. 6 Effects of 25 μL/L VOCs on quality indicators of peach fruit during the postharvest storageA. Ethylene release rate; B. Hardness; C. TSS content; D. Sensory quality analysis based on E-nose.
[1]   DE MICCOLIS ANGELINI R M, LANDI L, RAGUSEO C, et al. Tracking of diversity and evolution in the brown rot fungi Monilinia fructicola, Monilinia fructigena,and Monilinia laxa [J]. Frontiers in Microbiology, 2022, 13: 854852. DOI: 10.3389/fmicb.2022.854852
doi: 10.3389/fmicb.2022.854852
[2]   BAGGIO J S, HAU B, AMORIM L. Spatiotemporal analyses of rhizopus rot progress in peach fruit inoculated with Rhizopus stolonifer [J]. Plant Pathology, 2017, 66(9): 1452-1462. DOI: 10.1111/ppa.12691
doi: 10.1111/ppa.12691
[3]   FAN L, WEI Y Y, CHEN Y, et al. Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches[J]. Food Chemistry, 2023, 403: 134419. DOI: 10.1016/j.foodchem.2022.134419
doi: 10.1016/j.foodchem.2022.134419
[4]   尉冬梅,徐军,董丰收,等.大久保桃扩展青霉病斑外延组织中青霉菌及展青霉素的扩散范围检测[J].农产品质量与安全,2016(4):35-39. DOI:10.3969/j.issn.1674-8255.2016.04.010
WEI D M, XU J, DONG F S, et al. Detection of the spread range of Penicillium and patulinin the extension tissue of Penicillium expansum spot in Okubo peach fruit[J]. Quality and Safety of Agro-Products, 2016(4): 35-39. (in Chinese)
doi: 10.3969/j.issn.1674-8255.2016.04.010
[5]   霍鹏升.桃黑斑病病原鉴定、生物学特性及化学防治研究[D].扬州:扬州大学,2016.
HUO P S. Pathogen, biological characteristics and chemical control of peach black spot[D]. Yangzhou: Yangzhou University, 2016. (in Chinese with English abstract)
[6]   苟攀宁,薛应钰,陈军宏,等.油桃酸腐病病菌的分离鉴定及其生物学特性[J].甘肃农业大学学报,2021,56(6):97-103. DOI:10.13432/j.cnki.jgsau.2021.06.013
GOU P N, XUE Y Y, CHEN J H, et al. Isolation and identification of nectarine acid rot disease and its biological characteristics[J]. Journal of Gansu Agricultural University, 2021, 56(6): 97-103. (in Chinese with English abstract)
doi: 10.13432/j.cnki.jgsau.2021.06.013
[7]   BRAVO CADENA M, PRESTON G M, VAN DER HOORN R A L, et al. Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles[J]. Industrial Crops and Products, 2018, 122: 582-590. DOI: 10.1016/j.indcrop.2018.05.081
doi: 10.1016/j.indcrop.2018.05.081
[8]   EDUARDO I, CHIETERA G, BASSI D, et al. Identification of key odor volatile compounds in the essential oil of nine peach accessions[J]. Journal of the Science of Food and Agriculture, 2010, 90(7): 1146-1154. DOI: 10.1002/jsfa.3932
doi: 10.1002/jsfa.3932
[9]   XU Y Q, TONG Z C, ZHANG X, et al. Unveiling the mechanisms for the plant volatile organic compound linalool to control gray mold on strawberry fruits[J]. Journal of Agricultural and Food Chemistry, 2019, 67(33): 9265-9276. DOI: 10.1021/acs.jafc.9b03103
doi: 10.1021/acs.jafc.9b03103
[10]   SONG J, HILDEBRAND P D, FAN L H, et al. Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay[J]. Journal of Food Science, 2007, 72(4): M108-M112. DOI: 10.1111/j.1750-3841.2007.00341.x
doi: 10.1111/j.1750-3841.2007.00341.x
[11]   ZHANG J H, SUN H L, CHEN S Y, et al. Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium [J]. Botanical Studies, 2017, 58: 13. DOI: 10.1186/s40529-017-0168-8
doi: 10.1186/s40529-017-0168-8
[12]   SANTORO K, MAGHENZANI M, CHIABRANDO V, et al. Thyme and savory essential oil vapor treatments control brown rot and improve the storage quality of peaches and nectarines, but could favor gray mold[J]. Foods, 2018, 7(1): 7. DOI: 10.3390/foods7010007
doi: 10.3390/foods7010007
[13]   WANG X Z, HUANG M M, PENG Y, et al. Antifungal activity of 1-octen-3-ol against Monilinia fructicola and its ability in enhancing disease resistance of peach fruit[J]. Food Control, 2022, 135: 108804. DOI: 10.1016/j.foodcont.2021.108804
doi: 10.1016/j.foodcont.2021.108804
[14]   NERI F, MARI M, BRIGATI S, et al. Fungicidal activity of plant volatile compounds for controlling Monilinia laxa in stone fruit[J]. Plant Disease, 2007, 91(1): 30-35. DOI: 10.1094/PD-91-0030
doi: 10.1094/PD-91-0030
[15]   ZHANG B, SHEN J Y, WEI W W, et al. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening[J]. Journal of Agricultural and Food Chemistry, 2010, 58(10): 6157-6165. DOI: 10.1021/jf100172e
doi: 10.1021/jf100172e
[16]   SILVA E R, DE CARVALHO F O, TEIXEIRA L G B, et al. Pharmacological effects of carvacrol in in vitro studies: a review[J]. Current Pharmaceutical Design, 2018, 24(29): 3454-3465. DOI: 10.2174/1381612824666181003123400
doi: 10.2174/1381612824666181003123400
[17]   XIN R, LIU X H, WEI C Y, et al. E-nose and GC-MS reveal a difference in the volatile profiles of white- and red-fleshed peach fruit[J]. Sensors, 2018, 18(3): 765. DOI: 10.3390/s18030765
doi: 10.3390/s18030765
[18]   冯武.植物精油对果蔬采后病害的防治及其防治机理研究[D].杭州:浙江大学,2006.
FENG W. The study of control and mechanism of action on postharvest diseases of fruit and vegetables by essential oils[D]. Hangzhou: Zhejiang University, 2006. (in Chinese with English abstract)
[19]   KRETSCHMER M, DAMOO D, SUN S, et al. Organic acids and glucose prime late-stage fungal biotrophy in maize[J]. Science, 2022, 376(6598): 1187-1191. DOI: 10.1126/science.abo2401
doi: 10.1126/science.abo2401
[20]   何敏.48种精油单组分的抗真菌作用规律及其对猕猴桃采后病害的控制效果[D].武汉:华中农业大学,2022.
HE M. Antifungal action of 48 compounds in essential oils and its control on postharvest disease of kiwifruit[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract)
[21]   李娟.解淀粉芽孢杆菌TJ抑菌物质的研究[D].天津:天津农学院,2015. DOI:10.1016/s1006-8104(16)30010-1
LI J. Study on the antifungal substance of Bacillus amyloli-quefaciens [D]. Tianjin: Tianjin Agricultural University, 2015. (in Chinese with English abstract)
doi: 10.1016/s1006-8104(16)30010-1
[22]   CHO M J, BUESCHER R W, JOHNSON M, et al. Inactivation of pathogenic bacteria by cucumber volatiles (E, Z)-2, 6-nonadienal and (E)-2-nonenal[J]. Journal of Food Protection, 2004, 67(5): 1014-1016. DOI: 10.4315/0362-028x-67.5.1014
doi: 10.4315/0362-028x-67.5.1014
[23]   MATSUI K, MINAMI A, HORNUNG E, et al. Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber[J]. Phytochemistry, 2006, 67(7): 649-657. DOI: 10.1016/j.phytochem.2006.01.006
doi: 10.1016/j.phytochem.2006.01.006
[24]   刘颜颜.夏威夷果贮藏异味的产生及其防控技术研究[D].无锡:江南大学,2022. DOI:10.59528/ms.jdssi2023.1227a11
LIU Y Y. The production and prevention of macadamia off-flavor during storage[D]. Wuxi: Jiangnan University, 2022. (in Chinese with English abstract)
doi: 10.59528/ms.jdssi2023.1227a11
[25]   SONG G, DU S L, SUN H L, et al. Antifungal mechanism of (E)-2-hexenal against Botrytis cinerea growth revealed by transcriptome analysis[J]. Frontiers in Microbiology, 2022, 13: 951751. DOI:10.3389/fmicb.2022.951751
doi: 10.3389/fmicb.2022.951751
[26]   WANG X H, FU M R, QU X Q, et al. (E)-2-hexenal-based coating induced acquired resistance in apple and its antifungal effects against Penicillium expansum [J]. LWT-Food Science and Technology, 2022, 163: 113536. DOI: 10.1016/j.lwt.2022.113536
doi: 10.1016/j.lwt.2022.113536
[27]   朱莉莉.植物源产物牛蒡低聚果糖(BFO)和反-2-己烯醛(E2H)在克瑞森无核葡萄保鲜中的作用机制[D].南昌:江西农业大学,2021.
ZHU L L. The fresh-keeping mechanisms of plant-derived products burdock fructooligosaccharide (BFO) and trans-2-hexenal (E2H) on ‘Crimson seedless’ grape (Vitis vinifera L.)[D]. Nanchang: Jiangxi Agricultural University, 2021. (in Chinese with English abstract)
[1] GAO Xiao-ning,Gulpiye,WANG Mei-ying,HUANG Li-li,TU Xuan,KANG Zhen-sheng. Screening of plant endophytic actinomycetes producing chitinase and its antagonistic activity against Sclerotinia sclerotiorum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(6): 615-622.