Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (6): 765-775    DOI: 10.3785/j.issn.1008-9209.2022.12.131
Comparison of cell lineage development and regulation during early embryonic development in cattle and mice
Xiaotong WU(),Yan SHI,Shuang LI,Shaohua WANG,Kun ZHANG()
Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(2280KB)
Export: BibTeX | EndNote (RIS)      


Low reproductive efficiency of high-yielding dairy cows is a worldwide challenge, among which the high mortality rate of early embryos is one of the main reasons. Scientists have gained insightful knowledge into early embryonic development in mice while very little work has been performed in cattle. To better understand the early embryonic development in cattle, we compared early embryonic development in cattle and mice from the perspectives of embryo morphology, transcription factors and signaling pathways. It was found that after fertilization, degradation of maternal factors, zygotic genome activation, construction of cell polarity and asymmetric division occurred at different periods in the early embryos of cattle and mice. Eventually, embryos develop to blastocysts with three germ layers (trophectoderm, epiblast and primitive endoderm). Furthermore, multiple transcription factors and signaling pathways form complicated networks to regulate cell lineage differentiation during early embryonic development in cattle and mice. In summary, similar biological events occur one after another at the early embryonic development in cattle and mice, but the regulation of cell lineage differentiation is different, suggesting the limitations of using the early embryo of mouse as a research model. The study in this field plays a crucial role in improving reproductive efficiency of dairy cows and promoting the genetic improvement in cattle.

Key wordscattle      mouse      preimplantation      early embryo      lineage differentiation      trophectoderm      inner cell mass     
Received: 13 December 2022      Published: 25 December 2023
CLC:  Q954.4  
Corresponding Authors: Kun ZHANG     E-mail:;
Cite this article:

Xiaotong WU,Yan SHI,Shuang LI,Shaohua WANG,Kun ZHANG. Comparison of cell lineage development and regulation during early embryonic development in cattle and mice. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 765-775.

URL:     OR



关键词: 牛,  小鼠,  着床前,  早期胚胎,  谱系分化,  滋养外胚层,  内细胞团 
Fig. 1 Morphological changes and key biological events during early embryonic development in mice and cattle


Event of early




Period of development


Mouse embryo


Cattle embryo

合子基因组激活 ZGA2细胞期[6]8—16细胞期[8]
致密化 Compaction8细胞期[9]16—32细胞期[10]
Table 1 Comparison of periods and events of early embryonic development between mice and cattle
Fig. 2 First cell lineage differentiation in mice and cattle embryosThe black sharp arrow represents promoted expression, and the T-shaped arrow represents suppressed expression, and the arrow with the red cross represents unaffected expression.
Fig. 3 Second cell lineage differentiation in mice and cattle embryosThe black arrow represents promoted expression, and the arrow with the red cross represents unaffected expression.


Biological mechanisms at early embryonic development


Mouse embryo


Cattle embryo

抑制YAP是否影响囊胚发育 Whether inhibition of YAP affects blastocyst development[33][27]
抑制TEAD4是否影响囊胚发育 Whether inhibition of TEAD4 affects blastocyst development[39][36]
抑制TEAD4是否影响CDX2表达 Whether inhibition of TEAD4 affects CDX2 expression[39][35]
抑制TEAD4是否影响GATA3表达 Whether inhibition of TEAD4 affects GATA3 expression[39][35]
抑制CDX2是否影响囊胚发育 Whether inhibition of CDX2 affects blastocyst development[47][43]


Whether overexpression of H1FOO affects blastocyst development



Whether FGF4 rescues SOX17 expression after NANOG knockout

抑制ERK是否抑制GATA6表达 Whether inhibition of ERK inhibits GATA6 expression[75][70]
OCT4是否存在TFAP2C结合位点 Whether there is TFAP2C binding site in OCT4[61][61]
Table 2 Comparison of biological mechanisms at early embryonic development between mice and cattle
[1]   张毅,孙东晓,肖炜,等.影响荷斯坦牛繁殖力及犊牛健康的遗传缺陷基因研究进展[J].中国畜牧杂志,2020,56(8):1-8. DOI:10.19556/j.0258-7033.20190901-03
ZHANG Y, SUN D X, XIAO W, et al. Genetic defect genes affecting cow fertility and calf survivability in Holstein cattle[J]. Chinese Journal of Animal Science, 2020, 56(8): 1-8. (in Chinese with English abstract)
doi: 10.19556/j.0258-7033.20190901-03
[2]   陈希鹃,肖喜东,吴明安.影响奶牛繁殖力的因素与对策[J].中国乳业,2020(5):49-50. DOI:10.16172/j.cnki.114768.2020.05.011
CHEN X J, XIAO X D, WU M A. Influencing factors and countermeasures of dairy cow fertility[J]. China Dairy, 2020(5): 49-50. (in Chinese)
doi: 10.16172/j.cnki.114768.2020.05.011
[3]   MAÎTRE J L, TURLIER H, ILLUKKUMBURA R, et al. Asymmetric division of contractile domains couples cell positioning and fate specification[J]. Nature, 2016, 536(7616): 344-348. DOI: 10.1038/nature18958
doi: 10.1038/nature18958
[4]   PŁUSA B, PILISZEK A. Common principles of early mammalian embryo self-organisation[J]. Development, 2020, 147(14): dev183079. DOI: 10.1242/dev.183079
doi: 10.1242/dev.183079
[5]   JOHNSON M H, MCCONNELL J M L. Lineage allocation and cell polarity during mouse embryogenesis[J]. Seminars in Cell & Developmental Biology, 2004, 15(5): 583-597. DOI: 10.1016/j.semcdb.2004.04.002
doi: 10.1016/j.semcdb.2004.04.002
[6]   ABE K I, FUNAYA S, TSUKIOKA D, et al. Minor zygotic gene activation is essential for mouse preimplantation development[J]. PNAS, 2018, 115(29): E6780-E6788. DOI: 10.1073/pnas.1804309115
doi: 10.1073/pnas.1804309115
[7]   ABE K I, YAMAMOTO R, FRANKE V, et al. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3 ´ processing[J]. The EMBO Journal, 2015, 34(11): 1523-1537. DOI: 10.15252/embj.201490648
doi: 10.15252/embj.201490648
[8]   MEIRELLES F V, CAETANO A R, WATANABE Y F, et al. Genome activation and developmental block in bovine embryos[J]. Animal Reproduction Science, 2004, 82/83: 13-20. DOI: 10.1016/j.anireprosci.2004.05.012
doi: 10.1016/j.anireprosci.2004.05.012
[9]   AGHION J, GUETH-HALLONET C, ANTONY C, et al. Cell adhesion and gap junction formation in the early mouse embryo are induced prematurely by 6-DMAP in the absence of E-cadherin phosphorylation[J]. Journal of Cell Science, 1994, 107(5): 1369-1379.
[10]   VAN SOOM A, VAN VLAENDEREN I, MAHMOUDZADEH A R, et al. Compaction rate of in vitro fertilized bovine embryos related to the interval from insemination to first cleavage[J]. Theriogenology, 1992, 38(5): 905-919.
[11]   JOHNSON M H, ZIOMEK C A. The foundation of two distinct cell lineages within the mouse morula[J]. Cell, 1981, 24(1): 71-80.
[12]   REEVE W J, ZIOMEK C A. Distribution of microvilli on dissociated blastomeres from mouse embryos: evidence for surface polarization at compaction[J]. Journal of Embryology and Experimental Morphology, 1981, 62: 339-350.
[13]   KOYAMA H, SUZUKI H, YANG X Z, et al. Analysis of polarity of bovine and rabbit embryos by scanning electron microscopy[J]. Biology of Reproduction, 1994, 50(1): 163-170.
[14]   MATSUMOTO Y, INDEN M, TAMURA A, et al. Ezrin mediates neuritogenesis via down-regulation of RhoA activity in cultured cortical neurons[J]. PLoS ONE, 2014, 9(8): e105435. DOI: 10.1371/journal.pone.0105435
doi: 10.1371/journal.pone.0105435
[15]   LOUVET S, AGHION J, SANTA-MARIA A, et al. Ezrin becomes restricted to outer cells following asymmetrical division in the preimplantation mouse embryo[J]. Developmental Biology, 1996, 177(2): 568-579.
[16]   DOS ANJOS S A A, COSTA C P DA, ASSUMPÇÃO M E O A, et al. Inhibition of apical domain formation does not block blastocyst development in bovine embryos[J]. Repro-duction, Fertility, and Development, 2021, 33(10): 665-673. DOI: 10.1071/RD20339
doi: 10.1071/RD20339
[17]   STEPHENSON R O, YAMANAKA Y, ROSSANT J. Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin[J]. Development, 2010, 137(20): 3383-3391. DOI: 10.1242/dev.050195
doi: 10.1242/dev.050195
[18]   FIERRO-GONZÁLEZ J C, WHITE M D, SILVA J C, et al. Cadherin-dependent filopodia control preimplantation embryo compaction[J]. Nature Cell Biology, 2013, 15(12): 1424-1433. DOI: 10.1038/ncb2875
doi: 10.1038/ncb2875
[19]   RECTOR J T, GRANHOLM N H. Differential concanavalin A-induced agglutination of eight-cell preimplantation mouse embryos before and after compaction[J]. The Journal of Experimental Zoology, 1978, 203(3): 497-502.
[20]   CHAN C J, COSTANZO M, RUIZ-HERRERO T, et al. Hydraulic control of mammalian embryo size and cell fate[J]. Nature, 2019, 571(7763): 112-116. DOI: 10.1038/s41586-019-1309-x
doi: 10.1038/s41586-019-1309-x
[21]   TARKOWSKI A K, WRÓBLEWSKA J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage[J]. Journal of Embryology and Experimental Morphology, 1967, 18(1): 155-180.
[22]   SPINDLE A I. Trophoblast regeneration by inner cell masses isolated from cultured mouse embryos[J]. The Journal of Experimental Zoology, 1978, 203(3): 483-489.
[23]   PENG J L, LI X L, ZHANG Y, et al. Par3/integrin β1 regulates embryo adhesion via changing endometrial luminal epithelium polarity[J]. Biology of Reproduction, 2021, 104(6): 1228-1238. DOI: 10.1093/biolre/ioab033
doi: 10.1093/biolre/ioab033
[24]   CHEN J, ZHANG M J. The Par3/Par6/aPKC complex and epithelial cell polarity[J]. Experimental Cell Research, 2013, 319(10): 1357-1364. DOI: 10.1016/j.yexcr.2013.03.021
doi: 10.1016/j.yexcr.2013.03.021
[25]   KOROTKEVICH E, NIWAYAMA R, COURTOIS A, et al. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo[J]. Developmental Cell, 2017, 40(3): 235-247. DOI: 10.1016/j.devcel.2017.01.006
doi: 10.1016/j.devcel.2017.01.006
[26]   YAMANAKA Y, HONMA K. Cardiovascular autonomic nervous response to postural change in 610 healthy Japanese subjects in relation to age[J]. Autonomic Neuroscience, 2006, 124(1/2): 125-131. DOI: 10.1016/j.autneu.2005.12.008
doi: 10.1016/j.autneu.2005.12.008
[27]   NEGRÓN-PÉREZ V M, HANSEN P J. Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst[J]. Biology of Reproduction, 2018, 98(2): 170-183. DOI: 10.1093/biolre/iox172
doi: 10.1093/biolre/iox172
[28]   HIRATE Y, HIRAHARA S, INOUE K I, et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos[J]. Current Biology, 2013, 23(13): 1181-1194. DOI: 10.1016/j.cub.2013.05.014
doi: 10.1016/j.cub.2013.05.014
[29]   OH S, LEE D J, KIM T, et al. Crucial role for Mst1 and Mst2 kinases in early embryonic development of the mouse[J]. Molecular and Cellular Biology, 2009, 29(23): 6309-6320. DOI: 10.1128/MCB.00551-09
doi: 10.1128/MCB.00551-09
[30]   NISHIOKA N, INOUE K I, ADACHI K, et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass[J]. Developmental Cell, 2009, 16(3): 398-410. DOI: 10.1016/j.devcel.2009.02.003
doi: 10.1016/j.devcel.2009.02.003
[31]   MENG Z P, MOROISHI T, GUAN K L. Mechanisms of Hippo pathway regulation[J]. Genes & Development, 2016, 30(1): 1-17. DOI: 10.1101/gad.274027.115
doi: 10.1101/gad.274027.115
[32]   SASAKI H. Mechanisms of trophectoderm fate specification in preimplantation mouse development[J]. Development, Growth & Differentiation, 2010, 52(3): 263-273. DOI: 10.1111/j.1440-169X.2009.01158.x
doi: 10.1111/j.1440-169X.2009.01158.x
[33]   MORIN-KENSICKI E M, BOONE B N, HOWELL M, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65 [J]. Molecular and Cellular Biology, 2006, 26(1): 77-87. DOI: 10.1128/MCB.26.1.77-87.2006
doi: 10.1128/MCB.26.1.77-87.2006
[34]   SAITO S, YAMAMURA S, KOHRI N, et al. Requirement for expression of WW domain containing transcription regulator 1 in bovine trophectoderm development[J]. Biochem-ical and Biophysical Research Communications, 2021, 555: 140-146. DOI: 10.1016/j.bbrc.2021.03.112
doi: 10.1016/j.bbrc.2021.03.112
[35]   SAKURAI N, TAKAHASHI K, EMURA N, et al. Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos[J]. Journal of Repro-duction and Development, 2017, 63(2): 135-142. DOI: 10.1262/jrd.2016-130
doi: 10.1262/jrd.2016-130
[36]   AKIZAWA H, KOBAYASHI K, BAI H, et al. Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst[J]. Reproduction, 2018, 155(6): 563-571. DOI: 10.1530/REP-18-0043
doi: 10.1530/REP-18-0043
[37]   SAVY V, ALBERIO V, CANEL N G, et al. CRISPR-on for activation of endogenous SMARCA4 and TFAP2C expression in bovine embryos[J]. Reproduction, 2020, 159(6): 767-778. DOI: 10.1530/REP-19-0517
doi: 10.1530/REP-19-0517
[38]   HALL-GLENN F, LYONS K M. Roles for CCN2 in normal physiological processes[J]. Cellular and Molecular Life Sciences, 2011, 68(19): 3209-3217. DOI: 10.1007/s00018-011-0782-7
doi: 10.1007/s00018-011-0782-7
[39]   NISHIOKA N, YAMAMOTO S, KIYONARI H, et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos[J]. Mechanisms of Development, 2008, 125(3/4): 270-283. DOI: 10.1016/j.mod.2007.11.002
doi: 10.1016/j.mod.2007.11.002
[40]   HOME P, SAHA B, RAY S, et al. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment[J]. PNAS, 2012, 109(19): 7362-7367. DOI: 10.1073/pnas.1201595109
doi: 10.1073/pnas.1201595109
[41]   FUJII T, MORIYASU S, HIRAYAMA H, et al. Aberrant expression patterns of genes involved in segregation of inner cell mass and trophectoderm lineages in bovine embryos derived from somatic cell nuclear transfer[J]. Cellular Reprogramming, 2010, 12(5): 617-625. DOI: 10.1089/cell.2010.0017
doi: 10.1089/cell.2010.0017
[42]   WU X, SONG M, YANG X, et al. Establishment of bovine embryonic stem cells after knockdown of CDX2[J]. Scientific Reports, 2016, 6: 28343. DOI: 10.1038/srep28343
doi: 10.1038/srep28343
[43]   GOISSIS M D, CIBELLI J B. Functional characterization of CDX2 during bovine preimplantation development in vitro [J]. Molecular Reproduction and Development, 2014, 81(10): 962-970. DOI: 10.1002/mrd.22415
doi: 10.1002/mrd.22415
[44]   ORSZTYNOWICZ M, LECHNIAK D, PAWLAK P, et al. Changes in chromosome territory position within the nucleus reflect alternations in gene expression related to embryonic lineage specification[J]. PLoS ONE, 2017, 12(8): e0182398. DOI: 10.1371/journal.pone.0182398
doi: 10.1371/journal.pone.0182398
[45]   YAMAMURA S, GODA N, AKIZAWA H, et al. Yes-associated protein 1 translocation through actin cytoskeleton organization in trophectoderm cells[J]. Developmental Biology, 2020, 468(1/2): 14-25. DOI: 10.1016/j.ydbio.2020.09.004
doi: 10.1016/j.ydbio.2020.09.004
[46]   WANG C, HAN X J, ZHOU Z W, et al. Wnt3a activates the WNT-YAP/TAZ pathway to sustain CDX2 expression in bovine trophoblast stem cells[J]. DNA and Cell Biology, 2019, 38(5): 410-422. DOI: 10.1089/dna.2018.4458
doi: 10.1089/dna.2018.4458
[47]   JEDRUSIK A, COX A, WICHER K B, et al. Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition[J]. Developmental Biology, 2015, 398(2): 147-152. DOI: 10.1016/j.ydbio.2014.12.004
doi: 10.1016/j.ydbio.2014.12.004
[48]   AJDUK A, BISWAS SHIVHARE S, ZERNICKA-GOETZ M. The basal position of nuclei is one pre-requisite for asymmetric cell divisions in the early mouse embryo[J]. Developmental Biology, 2014, 392(2): 133-140. DOI: 10.1016/j.ydbio.2014.05.009
doi: 10.1016/j.ydbio.2014.05.009
[49]   FUNAYA S, OOGA M, SUZUKI M G, et al. Linker histone H1FOO regulates the chromatin structure in mouse zygotes[J]. FEBS Letters, 2018, 592(14): 2414-2424. DOI: 10.1002/1873-3468.13175
doi: 10.1002/1873-3468.13175
[50]   LI S, SHI Y, DANG Y N, et al. Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure[J]. Biology of Reproduction, 2022, 107(6): 1425-1438. DOI: 10.1093/biolre/ioac167
doi: 10.1093/biolre/ioac167
[51]   LI S, SHI Y, DANG Y N, et al. NOTCH signaling pathway is required for bovine early embryonic development[J]. Biology of Reproduction, 2021, 105(2): 332-344. DOI: 10.1093/biolre/ioab056
doi: 10.1093/biolre/ioab056
[52]   MENCHERO S, ROLLAN I, LOPEZ-IZQUIERDO A, et al. Transitions in cell potency during early mouse development are driven by Notch[J]. eLife, 2019, 8: e42930. DOI: 10.7554/eLife.42930
doi: 10.7554/eLife.42930
[53]   RAYON T, MENCHERO S, NIETO A, et al. Notch and Hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst[J]. Developmental Cell, 2014, 30(4): 410-422. DOI: 10.1016/j.devcel.2014.06.019
doi: 10.1016/j.devcel.2014.06.019
[54]   BATISTA M R, DINIZ P, TORRES A, et al. Notch signaling in mouse blastocyst development and hatching[J]. BMC Developmental Biology, 2020, 20: 9. DOI: 10.1186/s12861-020-00216-2
doi: 10.1186/s12861-020-00216-2
[55]   WATANABE Y, MIYASAKA K Y, KUBO A, et al. Notch and Hippo signaling converge on Strawberry Notch 1 (Sbno1) to synergistically activate Cdx2 during specification of the trophectoderm[J]. Scientific Reports, 2017, 7: 46135. DOI: 10.1038/srep46135
doi: 10.1038/srep46135
[56]   KUROSAKA S, ECKARDT S, MCLAUGHLIN K J. Pluripotent lineage definition in bovine embryos by Oct4 transcript localization[J]. Biology of Reproduction, 2004, 71(5): 1578-1582. DOI: 10.1095/biolreprod.104.029322
doi: 10.1095/biolreprod.104.029322
[57]   KHAN D R, DUBÉ D, GALL L, et al. Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo[J]. PLoS ONE, 2012, 7(3): e34110. DOI: 10.1371/journal.pone.0034110
doi: 10.1371/journal.pone.0034110
[58]   SIMMET K, ZAKHARTCHENKO V, PHILIPPOU-MASSIER J, et al. OCT4/POU5F1 is required for NANOG expression in bovine blastocysts[J]. PNAS, 2018, 115(11): 2770-2775. DOI: 10.1073/pnas.1718833115
doi: 10.1073/pnas.1718833115
[59]   SIMMET K, KUROME M, ZAKHARTCHENKO V, et al. OCT4/POU5F1 is indispensable for the lineage differentiation of the inner cell mass in bovine embryos[J]. The FASEB Journal, 2022, 36(6): e22337. DOI: 10.1096/fj.202101713RRR
doi: 10.1096/fj.202101713RRR
[60]   MADEJA Z E, SOSNOWSKI J, HRYNIEWICZ K, et al. Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine pre-implantation development[J]. BMC Developmental Biology, 2013, 13: 32. DOI: 10.1186/1471-213X-13-32
doi: 10.1186/1471-213X-13-32
[61]   BERG D K, SMITH C S, PEARTON D J, et al. Trophe-ctoderm lineage determination in cattle[J]. Developmental Cell, 2011, 20(2): 244-255. DOI: 10.1016/j.devcel.2011.01.003
doi: 10.1016/j.devcel.2011.01.003
[62]   LUO L, SHI Y, WANG H N, et al. Base editing in bovine embryos reveals a species-specific role of SOX2 in regulation of pluripotency[J]. PLoS Genetics, 2022, 18(7): e1010307. DOI: 10.1371/journal.pgen.1010307
doi: 10.1371/journal.pgen.1010307
[63]   ORTEGA M S, KELLEHER A M, O’NEIL E, et al. NANOG is required to form the epiblast and maintain pluripotency in the bovine embryo[J]. Molecular Reproduction and Develop-ment, 2020, 87(1): 152-160. DOI: 10.1002/mrd.23304
doi: 10.1002/mrd.23304
[64]   SPRINGER C, ZAKHARTCHENKO V, WOLF E, et al. Hypoblast formation in bovine embryos does not depend on NANOG[J]. Cells, 2021, 10(9): 2232. DOI: 10.3390/cells10092232
doi: 10.3390/cells10092232
[65]   WARZYCH E, PAWLAK P, LECHNIAK D, et al. WNT signalling supported by MEK/ERK inhibition is essential to maintain pluripotency in bovine preimplantation embryo[J]. Developmental Biology, 2020, 463(1): 63-76. DOI: 10.1016/j.ydbio.2020.04.004
doi: 10.1016/j.ydbio.2020.04.004
[66]   FIELDS S D, HANSEN P J, EALY A D. Fibroblast growth factor requirements for in vitro development of bovine embryos[J]. Theriogenology, 2011, 75(8): 1466-1475. DOI: 10.1016/j.theriogenology.2010.12.007
doi: 10.1016/j.theriogenology.2010.12.007
[67]   AKIZAWA H, NAGATOMO H, ODAGIRI H, et al. Conserved roles of fibroblast growth factor receptor 2 signaling in the regulation of inner cell mass development in bovine blastocysts[J]. Molecular Reproduction and Development, 2016, 83(6): 516-525. DOI: 10.1002/mrd.22646
doi: 10.1002/mrd.22646
[68]   ZHANG K, HANSEN P J, EALY A D. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro [J]. Reproduction, 2010, 140(6): 815-826. DOI: 10.1530/REP-10-0190
doi: 10.1530/REP-10-0190
[69]   GOOSSENS K, MESTDAGH P, LEFEVER S, et al. Regula-tory microRNA network identification in bovine blastocyst development[J]. Stem Cells and Development, 2013, 22(13): 1907-1920. DOI: 10.1089/scd.2012.0708
doi: 10.1089/scd.2012.0708
[70]   BRINKHOF B, VAN TOL H T A, GROOT KOERKAMP M J A, et al. A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a compara-tive analysis[J]. BMC Genomics, 2015, 16: 277. DOI: 10.1186/s12864-015-1448-x
doi: 10.1186/s12864-015-1448-x
[71]   MCLEAN Z, MENG F L, HENDERSON H, et al. Increased MAP kinase inhibition enhances epiblast-specific gene expression in bovine blastocysts[J]. Biology of Reproduction, 2014, 91(2): 49. DOI: 10.1095/biolreprod.114.120832
doi: 10.1095/biolreprod.114.120832
[72]   MADEJA Z E, HRYNIEWICZ K, ORSZTYNOWICZ M, et al. WNT/β-catenin signaling affects cell lineage and pluripotency-specific gene expression in bovine blastocysts: prospects for bovine embryonic stem cell derivation[J]. Stem Cells and Development, 2015, 24(20): 2437-2454. DOI: 10.1089/scd.2015.0053
doi: 10.1089/scd.2015.0053
[73]   XIAO Y, SOSA F, ROSS P J, et al. Regulation of NANOG and SOX2 expression by activin A and a canonical WNT agonist in bovine embryonic stem cells and blastocysts[J]. Biology Open, 2021, 10(11): bio058669. DOI: 10.1242/bio.058669
doi: 10.1242/bio.058669
[74]   MENG F L, FORRESTER-GAUNTLETT B, TURNER P, et al. Signal inhibition reveals JAK/STAT3 pathway as critical for bovine inner cell mass development[J]. Biology of Reproduction, 2015, 93(6): 132. DOI: 10.1095/biolreprod.115.134254
doi: 10.1095/biolreprod.115.134254
[75]   KUIJK E W, VAN TOL L T A, VAN DE VELDE H, et al. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos[J]. Development, 2012, 139(5): 871-882. DOI: 10.1242/dev.071688
doi: 10.1242/dev.071688
[1] Jinlong QIU,Lei LUO,Bingjie HU,Yanna DANG,Shuang LI,Yan SHI,Shaohua WANG,Kun ZHANG. Functions of developmental pluripotency-associated 2 and 4 (DPPA2/DPPA4) in bovine preimplantation embryo development and their potential mechanisms[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 253-260.
[2] Jinlong QIU,Yan SHI,Shuang LI,Kun ZHANG. Application status and prospect of bovine ovum pick-up and in vitro embryo production technologies[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 557-565.
[3] WANG Han, ZHAO Panpan, ZHANG Kun.

Cell lineage specification and its regulation mechanisms during mammalian preimplantation development [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 125-130.

[4] YI Youjin1,2,3#, HU shun1,4#, XIONG Xingyao2*, LIU Dongbo2, ZHONG Yingli2, YI Chuanzhu5. Immunoregulatory function of Ganoderma spore oil in immunocompromised mice. Journal of Zhejiang University[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 161-166.
[5] PANG Xun-sheng,LIN Chun-lian,XU Xue-ping,WANG Zheng-chao. Localization of Wnt1 and Frizzled 2 and identification of their ligand receptor relationship in the ovary tissue of immature mice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(3): 289-294.