Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (5): 557-565    DOI: 10.3785/j.issn.1008-9209.2021.12.272
Reviews     
Application status and prospect of bovine ovum pick-up and in vitro embryo production technologies
Jinlong QIU(),Yan SHI,Shuang LI,Kun ZHANG()
Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(2102KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The application of ovum pick-up (OPU) and in vitro embryo production (IVP) can significantly improve the reproductive efficiency of cows, which is of great significance for the propagation of superior breeds of dairy cows and beef cattle. In recent years, OPU/IVP technology has spread rapidly around the world and gradually replaced in vivo derived (IVD) technology to be the most wildly used method of embryo transfer. However, the technical system is still in its infancy in China due to the low efficiency and high technical difficulty in operation, which is the main restriction factor for genetic improvement of dairy cows and beef cattle in China. In this paper, we reviewed the current situation of OPU/IVP, the technical progress as well as the prospect of the application of OPU/IVP in the propagation of superior breeds of dairy cows and beef cattle, aiming to provide references for the complement of China’s OPU/IVP technical system and the improvement of efficiency of bovine reproduction, thereby promoting the development of bovine breeding in China.



Key wordsdairy cow      beef cattle      ovum pick-up      in vitro embryo production      propagation of superior breeds     
Received: 27 December 2021      Published: 02 November 2022
CLC:  S 823  
Corresponding Authors: Kun ZHANG     E-mail: qiujl@zju.edu.cn;kzhang@zju.edu.cn
Cite this article:

Jinlong QIU,Yan SHI,Shuang LI,Kun ZHANG. Application status and prospect of bovine ovum pick-up and in vitro embryo production technologies. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 557-565.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.12.272     OR     https://www.zjujournals.com/agr/Y2022/V48/I5/557


牛活体采卵和体外胚胎生产技术的应用现状和展望

活体采卵(ovum pick-up, OPU)结合体外胚胎生产(in vitro embryo production, IVP)技术能显著提高牛的繁殖效率,对奶牛和肉牛的良种扩繁具有重要意义。近年来,OPU/IVP技术在世界范围内迅速推广,逐步取代体内胚胎生产技术成为胚胎移植的主要技术手段。但是,因其整体效率低下、操作技术难度较大等,该技术体系在我国尚处于起步阶段,是制约我国奶牛和肉牛遗传改良的重要因素。本文从OPU/IVP的发展现状入手,阐述了OPU/IVP技术的进展情况,并针对该技术在良种扩繁等方面的应用前景提出展望,旨在为完善我国OPU/IVP技术体系和提高牛繁殖生产效率提供参考,从而促进养牛业的发展。


关键词: 奶牛,  肉牛,  活体采卵,  体外胚胎生产,  良种扩繁 
Fig. 1 Numbers of bovine OPU-derived oocytes, OPU-derived embryos, abattoir-derived oocytes and abattoir-derived embryos in the world (not including China, India and Japan) from 2016 to 2020
Fig. 2 Numbers of total bovine embryos, IVD embryos and IVP embryos in the world (not including China, India and Japan) from 2001 to 2020
Fig. 3 Procedure of bovine OPU/IVP

类别

Type

平均采卵数

Average number of collected oocytes

卵裂率

Cleavage rate/%

囊胚率

Blastocyst rate/%

文献

Reference

青年牛(12月龄)

Calf (12 months old)

7.3±2.678.2±2.445.9±1.69

成年牛(7~8岁)

Adult cow (7-8 years old)

6.1±2.163.3±2.630.2±1.4

老年牛(>14岁)

Old cow (>14 years old)

4.7±1.356.1±2.013.5±1.5

对照

Control

16.050.01.2枚5

马绒毛膜促性腺激素

Equine chorionic gonadotropin (eCG)

27.259.25.3枚

OPU时间

Time of OPU

平均卵泡数

Average number of follicles

卵母细胞回收率

Recovery rate of oocytes/%

卵泡直径

Diameter of follicles/mm

供体

Donor

发情期第3—4天

3rd-4th day of oestrum

4.9±0.3533~55岁荷斯坦牛[6]

发情期第9—10天

9th-10th day of oestrum

3.4±0.2506~8

发情期第15—16天

15th-16th day of oestrum

3.9±0.252

OPU 频率

OPU frequency

平均卵泡数

Average number of follicles

卵裂率

Cleavage rate/%

桑葚胚/囊胚率

Morula/blastocyst rate/%

供体

Donor

每周2次 Twice a week10.13±0.2051.2823.1

2岁中国

荷斯坦牛[8]

每5 d 1次 Once every 5 d10.40±0.1645.0015.0
每周1次 Once a week9.77±0.1041.3010.9
每10 d 1次 Once every 10 d10.40±0.1851.204.9
每20 d 1次 Once every 20 d11.81±0.5556.5029.0
Table 1 Some of bovine OPU experiments
Fig. 4 Developmental procedure of bovine embryos produced in vitro
胁迫因素 Stress factorOMREDRZCRBRPR文献 Reference
对照 Control正常正常14](卵细胞经热应激处理)
4 ℃,10 h抑制抑制
38.5 ℃,6 h抑制抑制
对照 Control正常14](受精卵经热应激处理)
41 ℃,6 h抑制
对照 Control正常正常15](精子经热应激处理)
41 ℃,4 h抑制抑制
对照 Control正常正常16
净化的空气 Cleaned air正常促进
EGF促进促进17
FGF2促进促进
IGF1促进促进
锌 Zinc促进促进18
Table 2 Some of bovine IVP experiments

参量

Parameter

人工授精

AI

超数排卵和胚胎移植

MOET

活体采卵结合体外胚胎生产

OPU/IVP

克隆/转基因技术

Cloning/transgenic technology

受精率

Fertilization rate/%

957060

第7天囊胚数

Number of blastocysts on the 7th day

90602520

第60天妊娠数

Number of pregnant cows on the 60th day

65321430

第7天存活犊牛数

Number of calves alive on the 7th day

5528111

犊牛出生体质量

Body mass of calf at birth

正常******

围产期犊牛死亡率

Perinatal fetal mortality rate

正常******
Table 3 Relative success rates of different reproductive technologies
[1]   MOORE S G, HASLER J F. A 100-year review: reproductive technologies in dairy science[J]. Journal of Dairy Science, 2017, 100(12): 10314-10331. DOI:10.3168/jds.2017-13138
doi: 10.3168/jds.2017-13138
[2]   HANSEN P J. Implications of assisted reproductive technologies for pregnancy outcomes in mammals[J]. Annual Review of Animal Biosciences, 2020, 8: 395-413. DOI:10.1146/annurev-animal-021419-084010
doi: 10.1146/annurev-animal-021419-084010
[3]   International Embryo Technology Society. Statistics of embryo production and transfer in domestic farm animals[R]//Data Retrieval Committee Reports. IETS Office, 2010-2020.
[4]   CHASTANT-MAILLARD S, QUINTON H, LAUFFENBURGER J, et al. Consequences of transvaginal follicular puncture on well-being in cows[J]. Reproduction, 2003, 125(4): 555-563. DOI:10.1530/rep.0.1250555
doi: 10.1530/rep.0.1250555
[5]   GALLI C, CROTTI G, NOTARI C, et al. Embryo production by ovum pick up from live donors[J]. Theriogenology, 2001, 55(6): 1341-1357. DOI:10.1016/s0093-691x(01)00486-1
doi: 10.1016/s0093-691x(01)00486-1
[6]   PIETERSE M C, VOS P L A M, KRUIP T A M, et al. Characteristics of bovine estrous cycles during repeated transvaginal, ultrasound-guided puncturing of follicles for ovum pick-up[J]. Theriogenology, 1991, 35(2): 401-413.
[7]   MACHATKOVA M, KRAUSOVA K, JOKESOVA E, et al. Developmental competence of bovine oocytes: effects of follicle size and the phase of follicular wave on in vitro embryo production[J]. Theriogenology, 2004, 61(2/3): 329-335. DOI:10.1016/s0093-691x(03)00216-4
doi: 10.1016/s0093-691x(03)00216-4
[8]   DING L J, TIAN H B, WANG J J, et al. Different intervals of ovum pick-up affect the competence of oocytes to support the preimplantation development of cloned bovine embryos[J]. Molecular Reproduction and Development, 2008, 75(12): 1710-1715. DOI:10.1002/mrd.20922
doi: 10.1002/mrd.20922
[9]   SU L, YANG S, HE X, et al. Effect of donor age on the developmental competence of bovine oocytes retrieved by ovum pick up[J]. Reproduction in Domestic Animals, 2012, 47(2): 184-189. DOI:10.1111/j.1439-0531.2009.01349.x
doi: 10.1111/j.1439-0531.2009.01349.x
[10]   BORUSZEWSKA D, SINDEREWICZ E, KOWALCZYK-ZIEBA I, et al. The effect of lysophosphatidic acid during in vitro maturation of bovine cumulus-oocyte complexes: cumulus expansion, glucose metabolism and expression of genes involved in the ovulatory cascade, oocyte and blastocyst competence[J]. Reproductive Biology and Endocrinology, 2015, 13: 44. DOI:10.1186/s12958-015-0044-x
doi: 10.1186/s12958-015-0044-x
[11]   LIN Y H, HWANG J L, HUANG L W, et al. Comparison of Quinn’s Advantage fertilization medium and tissue culture medium 199 for in vitro maturation of oocytes[J]. Taiwanese Journal of Obstetrics & Gynecology, 2014, 53(1): 17-20. DOI:10.1016/j.tjog.2013.12.001
doi: 10.1016/j.tjog.2013.12.001
[12]   HIRAO Y, SHIMIZU M, IGA K, et al. Optimization of oxygen concentration for growing bovine oocytes in vitro: constant low and high oxygen concentrations compromise the yield of fully grown oocytes[J]. Journal of Reproduction and Development, 2012, 58(2): 204-211. DOI:10.1262/jrd.11-132m
doi: 10.1262/jrd.11-132m
[13]   HASLER J F. Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces[J]. Theriogenology, 2014, 81(1): 152-169. DOI:10.1016/j.theriogenology.2013.09.010
doi: 10.1016/j.theriogenology.2013.09.010
[14]   PASCOTTINI O B, CATTEEUW M, VAN SOOM A, et al. Holding immature bovine oocytes in a commercial embryo holding medium: high developmental competence for up to 10 h at room temperature[J]. Theriogenology, 2018, 107: 63-69. DOI:10.1016/j.theriogenology.2017.10.040
doi: 10.1016/j.theriogenology.2017.10.040
[15]   SAKATANI M, YAMANAKA K, BALBOULA A Z, et al. Different thermotolerances in in vitro-produced embryos derived from different maternal and paternal genetic backgrounds[J]. Animal Science Journal, 2017, 88(12): 1934-1942. DOI:10.1111/asj.12875
doi: 10.1111/asj.12875
[16]   GUEMRA S, SILVA SANTO E DA, ZANIN R, et al. Effect of temporary meiosis block during pre-maturation of bovine cumulus-oocyte complexes on pregnancy rates in a commercial setting for in vitro embryo production[J]. Theriogenology, 2014, 81(7): 982-987. DOI:10.1016/j.theriogenology.2014.01.026
doi: 10.1016/j.theriogenology.2014.01.026
[17]   VAILES M T, MCCOSKI S R, WOOLDRIDGE L K, et al. Post-transfer outcomes in cultured bovine embryos supplemented with epidermal growth factor, fibroblast growth factor 2, and insulin-like growth factor 1[J]. Theriogenology, 2019, 124: 1-8. DOI:10.1016/j.theriogenology.2018.09.023
doi: 10.1016/j.theriogenology.2018.09.023
[18]   WOOLDRIDGE L K, NARDI M E, EALY A D. Zinc supplementation during in vitro embryo culture increases inner cell mass and total cell numbers in bovine blastocysts[J]. Journal of Animal Science, 2019, 97(12): 4946-4950. DOI:10.1093/jas/skz351
doi: 10.1093/jas/skz351
[19]   VAN WAGTENDONK-DE LEEUW A M. Ovum pick up and in vitro production in the bovine after use in several generations: a 2005 status[J]. Theriogenology, 2006, 65(5): 914-925. DOI:10.1016/j.theriogenology.2005.09.007
doi: 10.1016/j.theriogenology.2005.09.007
[20]   KRUIP T A M, DEN DAAS J H G. In vitro produced and cloned embryos: effects on pregnancy, parturition and offspring[J]. Theriogenology, 1997, 47(1): 43-52. DOI:10.1016/S0093-691X(96)00338-X
doi: 10.1016/S0093-691X(96)00338-X
[21]   VAN WAGTENDONK-DE LEEUW A M, MULLAART E, DE ROOS A P W, et al. Effects of different reproduction techniques: AI, MOET or IVP, on health and welfare of bovine offspring[J]. Theriogenology, 2000, 53(2): 575-597. DOI:10.1016/s0093-691x(99)00259-9
doi: 10.1016/s0093-691x(99)00259-9
[22]   EALY A D, WOOLDRIDGE L K, MCCOSKI S R. Post-transfer consequences of in vitro-produced embryos in cattle[J]. Journal of Animal Science, 2019, 97(6): 2555-2568. DOI:10.1093/jas/skz116
doi: 10.1093/jas/skz116
[23]   URREGO R, RODRIGUEZ-OSORIO N, NIEMANN H. Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle[J]. Epigenetics, 2014, 9(6): 803-815. DOI:10.4161/epi.28711
doi: 10.4161/epi.28711
[24]   KHURANA N K, NIEMANN H. Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo [J]. Biology of Reproduction, 2000, 62(4): 847-856. DOI:10.1095/biolreprod62.4.847
doi: 10.1095/biolreprod62.4.847
[25]   ABE H, OTOI T, TACHIKAWA S, et al. Fine structure of bovine morulae and blastocysts in vivo and in vitro [J]. Anatomy and Embryology, 1999, 199(6): 519-527. DOI:10.1007/s004290050249
doi: 10.1007/s004290050249
[26]   VANNESTE E, VOET T, MELOTTE C, et al. What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate[J]. Human Reproduction, 2009, 24(11): 2679-2682. DOI:10.1093/humrep/dep266
doi: 10.1093/humrep/dep266
[27]   TŠUIKO O, CATTEEUW M, ESTEKI M Z, et al. Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos[J]. Human Reproduction, 2017, 32(11): 2348-2357. DOI:10.1093/humrep/dex286
doi: 10.1093/humrep/dex286
[28]   SIQUEIRA L G B, DIKMEN S, ORTEGA M S, et al. Postnatal phenotype of dairy cows is altered by in vitro embryo production using reverse X-sorted semen[J]. Journal of Dairy Science, 2017, 100(7): 5899-5908. DOI:10.3168/jds.2016-12539
doi: 10.3168/jds.2016-12539
[29]   FUSHIMI Y, OKAWA H, MONNIAUX D, et al. Efficacy of a single blood anti-Müllerian hormone (AMH) concentration measurement for the selection of Japanese Black heifer embryo donors in herd breeding programs[J]. Journal of Reproduction and Development, 2020, 66(6): 593-598. DOI:10.1262/jrd.2020-069
doi: 10.1262/jrd.2020-069
[30]   VIEIRA L M, RODRIGUES C A, NETTO A C, et al. Superstimulation prior to the ovum pick-up to improve in vitro embryo production in lactating and non-lactating Holstein cows[J]. Theriogenology, 2014, 82(2): 318-324. DOI:10.1016/j.theriogenology.2014.04.013
doi: 10.1016/j.theriogenology.2014.04.013
[31]   BARCELÓ-FIMBRES M, CAMPOS-CHILLÓN L F, MTANGO N R, et al. Improving in vitro maturation and pregnancy outcome in cattle using a novel oocyte shipping and maturation system not requiring a CO2 gas phase[J]. Theriogenology, 2015, 84(1): 109-117. DOI:10.1016/j.theriogenology.2015.02.020
doi: 10.1016/j.theriogenology.2015.02.020
[32]   GILCHRIST R B, LUCIANO A M, RICHANI D, et al. Oocyte maturation and quality: role of cyclic nucleotides[J]. Reproduction, 2016, 152(5): R143-R157. DOI:10.1530/REP-15-0606
doi: 10.1530/REP-15-0606
[33]   MACAULAY A D, GILBERT I, CABALLERO J, et al. The gametic synapse: RNA transfer to the bovine oocyte[J]. Biology of Reproduction, 2014, 91(4): 90. DOI:10.1095/biolreprod.114.119867
doi: 10.1095/biolreprod.114.119867
[34]   SANTANA P D P B, COSTA DA SILVA A L DA, RAMOS R T J, et al. Contributions of RNA-seq to improve in vitro embryo production (IVP)[J]. Animal Reproduction, 2019, 16(2): 249-259. DOI:10.21451/1984-3143-AR2017-0043
doi: 10.21451/1984-3143-AR2017-0043
[35]   SILVEIRA J C DA, ANDRADE G M, DEL COLLADO M, et al. Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development[J]. PLoS ONE, 2017, 12(6): e0179451. DOI:10.1371/journal.pone.0179451
doi: 10.1371/journal.pone.0179451
[36]   ALMEIDA J, NEVES B P, BRITO M F, et al. Impact of in vitro fertilization by refrigerated versus frozen buffalo semen on developmental competence of buffalo embryos[J]. Animal Reproduction, 2020, 17(4): e20200033. DOI:10.1590/1984-3143-AR2020-0033
doi: 10.1590/1984-3143-AR2020-0033
[37]   KROPP J, CARRILLO J A, NAMOUS H, et al. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos[J]. BMC Genomics, 2017, 18(1): 280. DOI:10.1186/s12864-017-3673-y
doi: 10.1186/s12864-017-3673-y
[38]   LOPES J S, ALCÁZAR-TRIVIÑO E, SORIANO-ÚBEDA C, et al. Reproductive outcomes and endocrine profile in artificially inseminated versus embryo transferred cows[J]. Animals, 2020, 10(8): 1359. DOI:10.3390/ani10081359
doi: 10.3390/ani10081359
[39]   DEB G K, JIN J I, KWON T H, et al. Improved blastocyst development of single cow OPU-derived presumptive zygotes by group culture with agarose-embedded helper embryos[J]. Reproductive Biology and Endocrinology, 2011, 9: 121. DOI:10.1186/1477-7827-9-121
doi: 10.1186/1477-7827-9-121
[40]   WOOLDRIDGE L K, EALY A D. Interleukin-6 increases inner cell mass numbers in bovine embryos[J]. BMC Developmental Biology, 2019, 19(1): 2. DOI:10.1186/s12861-019-0182-z
doi: 10.1186/s12861-019-0182-z
[41]   HUMBLOT P, LE BOURHIS D, FRITZ S, et al. Reproductive technologies and genomic selection in cattle[J]. Veterinary Medicine International, 2010, 2010: 192787. DOI:10.4061/2010/192787
doi: 10.4061/2010/192787
[42]   DEMETRIO D G B, BENEDETTI E, DEMETRIO C G B, et al. How can we improve embryo production and pregnancy outcomes of Holstein embryos produced in vitro? (12 years of practical results at a California dairy farm)[J]. Animal Reproduction, 2020, 17(3): e20200053. DOI:10.1590/1984-3143-AR2020-0053
doi: 10.1590/1984-3143-AR2020-0053
[1] Yi CHEN,Fei JI,Jianxin LIU,Diming WANG. Effect of dietary supplementation of Zn- L -selenomethionine on lactation performance and plasma biochemical indexes of dairy cows in peak lactation period[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 517-524.
[2] Jincheng HE,Xian ZHANG,Suqing LI,Qianfu GAN. Effects of ambient temperature and relative humidity and measurement site on the cow’s body temperature measured by infrared thermography[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 500-508.
[3] Zhihong TANG,Ningning XU,Jun’an YE. Effect of compound probiotics and yeast culture on milk production, rumen fermentation and serum anti-stress parameters of heat-stressed dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 611-618.
[4] LI Yongxin, ZOU Yixuan, LIU Jianxin, LIU Hongyun. Progress on oxidative stress and natural phytogenic antioxidants in dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 549-554.